{"title":"利用序列对序列模型和自适应SEIR模型预测和监测印度COVID-19的流行趋势","authors":"K. D. Gupta, R. Dwivedi, D. Sharma","doi":"10.1515/comp-2020-0221","DOIUrl":null,"url":null,"abstract":"Abstract In the year 2019, during the month of December, the first case of SARS-CoV-2 was reported in China. As per reports, the virus started spreading from a wet market in the Wuhan City. The person infected with the virus is diagnosed with cough and fever, and in some rare occasions, the person suffers from breathing inabilities. The highly contagious nature of this corona virus disease (COVID-19) caused the rapid outbreak of the disease around the world. India contracted the disease from China and reported its first case on January 30, 2020, in Kerala. Despite several counter measures taken by Government, India like other countries could not restrict the outbreak of the epidemic. However, it is believed that the strict policies adopted by the Indian Government have slowed the rate of the epidemic to a certain extent. This article proposes an adaptive SEIR disease model and a sequence-to-sequence (Seq2Seq) learning model to predict the future trend of COVID-19 outbreak in India and analyze the performance of these models. Optimization of hyper parameters using RMSProp is done to obtain an efficient model with lower convergence time. This article focuses on evaluating the performance of deep learning networks and epidemiological models in predicting a pandemic outbreak.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting and monitoring COVID-19 epidemic trends in India using sequence-to-sequence model and an adaptive SEIR model\",\"authors\":\"K. D. Gupta, R. Dwivedi, D. Sharma\",\"doi\":\"10.1515/comp-2020-0221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the year 2019, during the month of December, the first case of SARS-CoV-2 was reported in China. As per reports, the virus started spreading from a wet market in the Wuhan City. The person infected with the virus is diagnosed with cough and fever, and in some rare occasions, the person suffers from breathing inabilities. The highly contagious nature of this corona virus disease (COVID-19) caused the rapid outbreak of the disease around the world. India contracted the disease from China and reported its first case on January 30, 2020, in Kerala. Despite several counter measures taken by Government, India like other countries could not restrict the outbreak of the epidemic. However, it is believed that the strict policies adopted by the Indian Government have slowed the rate of the epidemic to a certain extent. This article proposes an adaptive SEIR disease model and a sequence-to-sequence (Seq2Seq) learning model to predict the future trend of COVID-19 outbreak in India and analyze the performance of these models. Optimization of hyper parameters using RMSProp is done to obtain an efficient model with lower convergence time. This article focuses on evaluating the performance of deep learning networks and epidemiological models in predicting a pandemic outbreak.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2020-0221\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0221","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting and monitoring COVID-19 epidemic trends in India using sequence-to-sequence model and an adaptive SEIR model
Abstract In the year 2019, during the month of December, the first case of SARS-CoV-2 was reported in China. As per reports, the virus started spreading from a wet market in the Wuhan City. The person infected with the virus is diagnosed with cough and fever, and in some rare occasions, the person suffers from breathing inabilities. The highly contagious nature of this corona virus disease (COVID-19) caused the rapid outbreak of the disease around the world. India contracted the disease from China and reported its first case on January 30, 2020, in Kerala. Despite several counter measures taken by Government, India like other countries could not restrict the outbreak of the epidemic. However, it is believed that the strict policies adopted by the Indian Government have slowed the rate of the epidemic to a certain extent. This article proposes an adaptive SEIR disease model and a sequence-to-sequence (Seq2Seq) learning model to predict the future trend of COVID-19 outbreak in India and analyze the performance of these models. Optimization of hyper parameters using RMSProp is done to obtain an efficient model with lower convergence time. This article focuses on evaluating the performance of deep learning networks and epidemiological models in predicting a pandemic outbreak.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.