关于四点上无路径悬挂图中三角形数的一个注记

IF 1 Q1 MATHEMATICS
Dániel Gerbner
{"title":"关于四点上无路径悬挂图中三角形数的一个注记","authors":"Dániel Gerbner","doi":"10.47443/dml.2022.043","DOIUrl":null,"url":null,"abstract":"The suspension of the path P 4 consists of a P 4 and an additional vertex connected to each of the four vertices, and is denoted by ˆ P 4 . The largest number of triangles in a ˆ P 4 -free n -vertex graph is denoted by ex( n, K 3 , ˆ P 4 ). Mubayi and Mukherjee in 2020 showed that ex( n, K 3 , ˆ P 4 ) = n 2 / 8 + O ( n ). We show that for sufficiently large n , ex( n, K 3 , ˆ P 4 ) = ⌊ n 2 / 8 ⌋ .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on the Number of Triangles in Graphs Without the Suspension of a Path on Four Vertices\",\"authors\":\"Dániel Gerbner\",\"doi\":\"10.47443/dml.2022.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suspension of the path P 4 consists of a P 4 and an additional vertex connected to each of the four vertices, and is denoted by ˆ P 4 . The largest number of triangles in a ˆ P 4 -free n -vertex graph is denoted by ex( n, K 3 , ˆ P 4 ). Mubayi and Mukherjee in 2020 showed that ex( n, K 3 , ˆ P 4 ) = n 2 / 8 + O ( n ). We show that for sufficiently large n , ex( n, K 3 , ˆ P 4 ) = ⌊ n 2 / 8 ⌋ .\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

悬浮》路径4公司of a P和P的vertex连通到每四vertices之措施,和是denoted由ˆP 4。最大的三角形当家》aˆP 4 -free n -vertex graph是denoted由前任3 (n, K,ˆP 4)。Mubayi和2020·穆克吉在那里那个前任3 (n, K,ˆP + 4) = n = 2 - 8 O (n)。我们为秀秀那fficiently大n 3 ex (n, K,ˆP - 4) =⌊n = 2 - 8⌋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Number of Triangles in Graphs Without the Suspension of a Path on Four Vertices
The suspension of the path P 4 consists of a P 4 and an additional vertex connected to each of the four vertices, and is denoted by ˆ P 4 . The largest number of triangles in a ˆ P 4 -free n -vertex graph is denoted by ex( n, K 3 , ˆ P 4 ). Mubayi and Mukherjee in 2020 showed that ex( n, K 3 , ˆ P 4 ) = n 2 / 8 + O ( n ). We show that for sufficiently large n , ex( n, K 3 , ˆ P 4 ) = ⌊ n 2 / 8 ⌋ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信