Asif Mahmud , Ian Hamilton , Vikash V. Gayah , Richard J. Porter
{"title":"用异方差对数-线性回归模型估计VMT","authors":"Asif Mahmud , Ian Hamilton , Vikash V. Gayah , Richard J. Porter","doi":"10.1080/19427867.2023.2189802","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle miles traveled (VMT) is an essential input for many aspects of transportation engineering, and an accurate estimation of VMT is critical for practicing engineers. Linear regression models are a popular method to estimate VMT as they provide insight into the relationships between VMT and other external factors. In linear regression models the prediction of the response variable has a non-zero probability of resulting in a negative value. For this reason, the natural logarithm of VMT is often used as the response variable to force a positive outcome. However, these log-linear regression (LLR) models provide median VMT estimate instead of the mean estimate. To overcome this limitation of LLR models, this study proposes using heteroskedastic LLR and count data methods to estimate VMT. These methods are found to have better performance than LLR models in terms of data fit and prediction accuracy.</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 4","pages":"Pages 320-329"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of VMT using heteroskedastic log-linear regression models\",\"authors\":\"Asif Mahmud , Ian Hamilton , Vikash V. Gayah , Richard J. Porter\",\"doi\":\"10.1080/19427867.2023.2189802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicle miles traveled (VMT) is an essential input for many aspects of transportation engineering, and an accurate estimation of VMT is critical for practicing engineers. Linear regression models are a popular method to estimate VMT as they provide insight into the relationships between VMT and other external factors. In linear regression models the prediction of the response variable has a non-zero probability of resulting in a negative value. For this reason, the natural logarithm of VMT is often used as the response variable to force a positive outcome. However, these log-linear regression (LLR) models provide median VMT estimate instead of the mean estimate. To overcome this limitation of LLR models, this study proposes using heteroskedastic LLR and count data methods to estimate VMT. These methods are found to have better performance than LLR models in terms of data fit and prediction accuracy.</p></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 4\",\"pages\":\"Pages 320-329\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723000620\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723000620","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Estimation of VMT using heteroskedastic log-linear regression models
Vehicle miles traveled (VMT) is an essential input for many aspects of transportation engineering, and an accurate estimation of VMT is critical for practicing engineers. Linear regression models are a popular method to estimate VMT as they provide insight into the relationships between VMT and other external factors. In linear regression models the prediction of the response variable has a non-zero probability of resulting in a negative value. For this reason, the natural logarithm of VMT is often used as the response variable to force a positive outcome. However, these log-linear regression (LLR) models provide median VMT estimate instead of the mean estimate. To overcome this limitation of LLR models, this study proposes using heteroskedastic LLR and count data methods to estimate VMT. These methods are found to have better performance than LLR models in terms of data fit and prediction accuracy.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.