孤子方程的全纯解

Q2 Mathematics
A. Domrin
{"title":"孤子方程的全纯解","authors":"A. Domrin","doi":"10.1090/mosc/323","DOIUrl":null,"url":null,"abstract":"We present a holomorphic version of the inverse scattering method for soliton equations of parabolic type in two-dimensional space-time. It enables one to construct examples of solutions holomorphic in both variables and study the properties of all such solutions. We show that every local holomorphic solution of any of these equations admits an analytic continuation to a globally meromorphic function of the spatial variable. We also discuss the role of the Riemann problem in the theory of integrable systems, solubility conditions for the Cauchy problem, the property of trivial monodromy for all solutions of the auxiliary linear system, and the Painlevé property for soliton equations.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Holomorphic solutions of soliton equations\",\"authors\":\"A. Domrin\",\"doi\":\"10.1090/mosc/323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a holomorphic version of the inverse scattering method for soliton equations of parabolic type in two-dimensional space-time. It enables one to construct examples of solutions holomorphic in both variables and study the properties of all such solutions. We show that every local holomorphic solution of any of these equations admits an analytic continuation to a globally meromorphic function of the spatial variable. We also discuss the role of the Riemann problem in the theory of integrable systems, solubility conditions for the Cauchy problem, the property of trivial monodromy for all solutions of the auxiliary linear system, and the Painlevé property for soliton equations.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

给出了二维时空中抛物型孤子方程逆散射方法的全纯版本。它使我们能够构造两个变量全纯解的例子,并研究所有这些解的性质。我们证明了这些方程的每一个局部全纯解都允许对空间变量的全局亚纯函数的解析延拓。我们还讨论了黎曼问题在可积系统理论中的作用,柯西问题的溶解度条件,辅助线性系统所有解的平凡单调性质,以及孤子方程的painlevevl性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic solutions of soliton equations
We present a holomorphic version of the inverse scattering method for soliton equations of parabolic type in two-dimensional space-time. It enables one to construct examples of solutions holomorphic in both variables and study the properties of all such solutions. We show that every local holomorphic solution of any of these equations admits an analytic continuation to a globally meromorphic function of the spatial variable. We also discuss the role of the Riemann problem in the theory of integrable systems, solubility conditions for the Cauchy problem, the property of trivial monodromy for all solutions of the auxiliary linear system, and the Painlevé property for soliton equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信