{"title":"场地尺度水敏感城市设计(WSUD)在城市水循环中的作用:综述","authors":"Xuliang Meng","doi":"10.2166/bgs.2022.026","DOIUrl":null,"url":null,"abstract":"\n With city growth, the development of vacant or under-used land parcels is becoming more common compared to the past. The current ‘water-sensitive urban design (WSUD)’ approach to such development will improve resource efficiency, liveability, and the amenity of cities, especially natural water systems. However, there is a need to quantify the water performance of site-scale WSUD options, especially about how these options impact the ‘natural’ and ‘anthropogenic’ flows in the urban water cycle. This study reviewed research about site-scale applications, summarizing the urban water cycle studies from before development to after development. Key findings (i) include very big margin was quantified by (a) water retention (30–100%) and (b) portable water demand reduction (18–100%) for selected site-scale WSUD options through six research studies; (ii) still unclear about the selected site-scale WSUD options’ interaction performance in the urban water cycle between each water accounts, and (iii) need to clarify the site-scale WSUD option's contribution under specific rainfall scenarios. In summary, this study aims to review the literature on the urban water cycle; review the effects of site-scale WSUD options in the urban water cycle; review the water mass balance and relevant evaluation application, and highlight the opportunities for the future urban water cycle studies.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Understanding the effects of site-scale water-sensitive urban design (WSUD) in the urban water cycle: a review\",\"authors\":\"Xuliang Meng\",\"doi\":\"10.2166/bgs.2022.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With city growth, the development of vacant or under-used land parcels is becoming more common compared to the past. The current ‘water-sensitive urban design (WSUD)’ approach to such development will improve resource efficiency, liveability, and the amenity of cities, especially natural water systems. However, there is a need to quantify the water performance of site-scale WSUD options, especially about how these options impact the ‘natural’ and ‘anthropogenic’ flows in the urban water cycle. This study reviewed research about site-scale applications, summarizing the urban water cycle studies from before development to after development. Key findings (i) include very big margin was quantified by (a) water retention (30–100%) and (b) portable water demand reduction (18–100%) for selected site-scale WSUD options through six research studies; (ii) still unclear about the selected site-scale WSUD options’ interaction performance in the urban water cycle between each water accounts, and (iii) need to clarify the site-scale WSUD option's contribution under specific rainfall scenarios. In summary, this study aims to review the literature on the urban water cycle; review the effects of site-scale WSUD options in the urban water cycle; review the water mass balance and relevant evaluation application, and highlight the opportunities for the future urban water cycle studies.\",\"PeriodicalId\":9337,\"journal\":{\"name\":\"Blue-Green Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blue-Green Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/bgs.2022.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blue-Green Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/bgs.2022.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Understanding the effects of site-scale water-sensitive urban design (WSUD) in the urban water cycle: a review
With city growth, the development of vacant or under-used land parcels is becoming more common compared to the past. The current ‘water-sensitive urban design (WSUD)’ approach to such development will improve resource efficiency, liveability, and the amenity of cities, especially natural water systems. However, there is a need to quantify the water performance of site-scale WSUD options, especially about how these options impact the ‘natural’ and ‘anthropogenic’ flows in the urban water cycle. This study reviewed research about site-scale applications, summarizing the urban water cycle studies from before development to after development. Key findings (i) include very big margin was quantified by (a) water retention (30–100%) and (b) portable water demand reduction (18–100%) for selected site-scale WSUD options through six research studies; (ii) still unclear about the selected site-scale WSUD options’ interaction performance in the urban water cycle between each water accounts, and (iii) need to clarify the site-scale WSUD option's contribution under specific rainfall scenarios. In summary, this study aims to review the literature on the urban water cycle; review the effects of site-scale WSUD options in the urban water cycle; review the water mass balance and relevant evaluation application, and highlight the opportunities for the future urban water cycle studies.