{"title":"基于非局部Timoshenko梁模型的单壁碳纳米管自由振动","authors":"Yu-Chi Su, TS Cho","doi":"10.1093/jom/ufab028","DOIUrl":null,"url":null,"abstract":"\n Free vibration of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium is studied on the basis of the nonlocal Timoshenko beam model. Influences of the slenderness ratios, the boundary conditions, the atomic structures and the stiffness of the embedded medium on the natural frequencies and mode shapes of SWCNT are examined. The nonlocal effect is significant for the higher modes of SWCNT with a small slenderness ratio embedded in a soft elastic medium, and it softens the SWCNT except for the fundamental frequency of the clamped–free SWCNT.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Free vibration of a single-walled carbon nanotube based on the nonlocal Timoshenko beam model\",\"authors\":\"Yu-Chi Su, TS Cho\",\"doi\":\"10.1093/jom/ufab028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Free vibration of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium is studied on the basis of the nonlocal Timoshenko beam model. Influences of the slenderness ratios, the boundary conditions, the atomic structures and the stiffness of the embedded medium on the natural frequencies and mode shapes of SWCNT are examined. The nonlocal effect is significant for the higher modes of SWCNT with a small slenderness ratio embedded in a soft elastic medium, and it softens the SWCNT except for the fundamental frequency of the clamped–free SWCNT.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Free vibration of a single-walled carbon nanotube based on the nonlocal Timoshenko beam model
Free vibration of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium is studied on the basis of the nonlocal Timoshenko beam model. Influences of the slenderness ratios, the boundary conditions, the atomic structures and the stiffness of the embedded medium on the natural frequencies and mode shapes of SWCNT are examined. The nonlocal effect is significant for the higher modes of SWCNT with a small slenderness ratio embedded in a soft elastic medium, and it softens the SWCNT except for the fundamental frequency of the clamped–free SWCNT.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.