{"title":"新材料","authors":"David Brown, C. Viney","doi":"10.1201/9781003078432-19","DOIUrl":null,"url":null,"abstract":"An important step forward has now been taken by a team from TU Wien (Vienna) and DESY in Hamburg: They showed that a special material made of lanthanum, strontium, iron and oxygen can be switched back and forth between two different states: In one state the material is catalytically extremely active, in the other less so. The reason for this is the behavior of tiny iron nanoparticles on the surface, which has now been demonstrated in experiments at the German Electron Synchrotron DESY in Hamburg. This finding should now make it possible to develop even better catalysts.","PeriodicalId":93084,"journal":{"name":"Biotechnology (Faisalabad, Pakistan)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Materials\",\"authors\":\"David Brown, C. Viney\",\"doi\":\"10.1201/9781003078432-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important step forward has now been taken by a team from TU Wien (Vienna) and DESY in Hamburg: They showed that a special material made of lanthanum, strontium, iron and oxygen can be switched back and forth between two different states: In one state the material is catalytically extremely active, in the other less so. The reason for this is the behavior of tiny iron nanoparticles on the surface, which has now been demonstrated in experiments at the German Electron Synchrotron DESY in Hamburg. This finding should now make it possible to develop even better catalysts.\",\"PeriodicalId\":93084,\"journal\":{\"name\":\"Biotechnology (Faisalabad, Pakistan)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology (Faisalabad, Pakistan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003078432-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology (Faisalabad, Pakistan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003078432-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An important step forward has now been taken by a team from TU Wien (Vienna) and DESY in Hamburg: They showed that a special material made of lanthanum, strontium, iron and oxygen can be switched back and forth between two different states: In one state the material is catalytically extremely active, in the other less so. The reason for this is the behavior of tiny iron nanoparticles on the surface, which has now been demonstrated in experiments at the German Electron Synchrotron DESY in Hamburg. This finding should now make it possible to develop even better catalysts.