{"title":"Hedetniemi猜想与无穷布尔格的反例","authors":"Claude Tardif","doi":"10.14712/1213-7243.2023.003","DOIUrl":null,"url":null,"abstract":"We prove that for any c ≥ 5, there exists an infinite family (Gn)n∈N of graphs such that χ(Gn) > c for all n ∈ N and χ(Gm×Gn) ≤ c for all m 6= n. These counterexamples to Hedetniemi’s conjecture show that the Boolean lattices of exponential graphs with Kc as a base are infinite for c ≥ 5.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices\",\"authors\":\"Claude Tardif\",\"doi\":\"10.14712/1213-7243.2023.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for any c ≥ 5, there exists an infinite family (Gn)n∈N of graphs such that χ(Gn) > c for all n ∈ N and χ(Gm×Gn) ≤ c for all m 6= n. These counterexamples to Hedetniemi’s conjecture show that the Boolean lattices of exponential graphs with Kc as a base are infinite for c ≥ 5.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2023.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2023.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
We prove that for any c ≥ 5, there exists an infinite family (Gn)n∈N of graphs such that χ(Gn) > c for all n ∈ N and χ(Gm×Gn) ≤ c for all m 6= n. These counterexamples to Hedetniemi’s conjecture show that the Boolean lattices of exponential graphs with Kc as a base are infinite for c ≥ 5.