{"title":"在极低的频率使能的机械二极管","authors":"Tianzhi Yang, Zhonglei Duan, Xiangbo Meng, Shuanglong Liu, Li-Qun Chen","doi":"10.1115/1.4063143","DOIUrl":null,"url":null,"abstract":"\n This paper presents a refined model for a mechanical diode based on a mass-spring system. The proposed model utilizes a bilinear spring to construct a frequency converter, which effectively disrupts the reciprocal transmission of acoustic waves. By employing a mass-spring-mass system as a filter, a nonlocal connection is introduced to establish a low-frequency band gap, thereby achieving a mechanical diode with a lower operating frequency. The feasibility of these low-frequency mechanical diodes is demonstrated through comprehensive numerical simulations and experimental analyses. In addition, we evaluated the effect of bilinear springs and nonlocal connection parameters on the diode performance.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Roton-enabled mechanical diode at extremely low frequency\",\"authors\":\"Tianzhi Yang, Zhonglei Duan, Xiangbo Meng, Shuanglong Liu, Li-Qun Chen\",\"doi\":\"10.1115/1.4063143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a refined model for a mechanical diode based on a mass-spring system. The proposed model utilizes a bilinear spring to construct a frequency converter, which effectively disrupts the reciprocal transmission of acoustic waves. By employing a mass-spring-mass system as a filter, a nonlocal connection is introduced to establish a low-frequency band gap, thereby achieving a mechanical diode with a lower operating frequency. The feasibility of these low-frequency mechanical diodes is demonstrated through comprehensive numerical simulations and experimental analyses. In addition, we evaluated the effect of bilinear springs and nonlocal connection parameters on the diode performance.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Roton-enabled mechanical diode at extremely low frequency
This paper presents a refined model for a mechanical diode based on a mass-spring system. The proposed model utilizes a bilinear spring to construct a frequency converter, which effectively disrupts the reciprocal transmission of acoustic waves. By employing a mass-spring-mass system as a filter, a nonlocal connection is introduced to establish a low-frequency band gap, thereby achieving a mechanical diode with a lower operating frequency. The feasibility of these low-frequency mechanical diodes is demonstrated through comprehensive numerical simulations and experimental analyses. In addition, we evaluated the effect of bilinear springs and nonlocal connection parameters on the diode performance.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation