Mohamad S. Alwan, Xinzhi Liu, Taghreed G. Sugati, Humeyra Kiyak
{"title":"具有状态延迟的大规模随机脉冲系统的输入-状态稳定性","authors":"Mohamad S. Alwan, Xinzhi Liu, Taghreed G. Sugati, Humeyra Kiyak","doi":"10.1080/07362994.2021.2002164","DOIUrl":null,"url":null,"abstract":"Abstract This article addresses a class of large-scale stochastic impulsive systems with time delay and time-varying input disturbance having bounded magnitude. The main interest is to develop sufficient conditions for the input-to-state stability (ISS) and stabilization in the presence of impulsive effects. The method of Razumikhin–Lyapunov function is used to develop the ISS and stabilization properties. Later, these results are applied to a class of control systems where the controller actuators are susceptible to failures. It should be noted that our results are delay independent, and the designed reliable controller is robust with respect to the actuator failures and to the system uncertainties. It is also observed that if the isolated continuous system is ISS and subjected to bounded impulsive effects, then the resulting impulsive system preserves the ISS property. Moreover, if the isolated continuous subsystems are all ISS and the interconnection amongst them is bounded from above, then the impulsive interconnected system is ISS provided that the degree of stability of each subsystem is larger than the magnitude of interconnection. If the underlying continuous system is unstable, then the input-to-state stabilization of the impulsive system is guaranteed if the stabilizing impulses are applied to the system frequently. As an implication to these results, if the input disturbance is zero, then the input-to-state stability (or stabilization) reduces to the stability (or stabilization) of the equilibrium state of the underlying disturbance-free system. A numerical example and simulations are provided to illustrate the proposed results.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"152 - 183"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input-to-state stability for large-scale stochastic impulsive systems with state delay\",\"authors\":\"Mohamad S. Alwan, Xinzhi Liu, Taghreed G. Sugati, Humeyra Kiyak\",\"doi\":\"10.1080/07362994.2021.2002164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article addresses a class of large-scale stochastic impulsive systems with time delay and time-varying input disturbance having bounded magnitude. The main interest is to develop sufficient conditions for the input-to-state stability (ISS) and stabilization in the presence of impulsive effects. The method of Razumikhin–Lyapunov function is used to develop the ISS and stabilization properties. Later, these results are applied to a class of control systems where the controller actuators are susceptible to failures. It should be noted that our results are delay independent, and the designed reliable controller is robust with respect to the actuator failures and to the system uncertainties. It is also observed that if the isolated continuous system is ISS and subjected to bounded impulsive effects, then the resulting impulsive system preserves the ISS property. Moreover, if the isolated continuous subsystems are all ISS and the interconnection amongst them is bounded from above, then the impulsive interconnected system is ISS provided that the degree of stability of each subsystem is larger than the magnitude of interconnection. If the underlying continuous system is unstable, then the input-to-state stabilization of the impulsive system is guaranteed if the stabilizing impulses are applied to the system frequently. As an implication to these results, if the input disturbance is zero, then the input-to-state stability (or stabilization) reduces to the stability (or stabilization) of the equilibrium state of the underlying disturbance-free system. A numerical example and simulations are provided to illustrate the proposed results.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"41 1\",\"pages\":\"152 - 183\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.2002164\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.2002164","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Input-to-state stability for large-scale stochastic impulsive systems with state delay
Abstract This article addresses a class of large-scale stochastic impulsive systems with time delay and time-varying input disturbance having bounded magnitude. The main interest is to develop sufficient conditions for the input-to-state stability (ISS) and stabilization in the presence of impulsive effects. The method of Razumikhin–Lyapunov function is used to develop the ISS and stabilization properties. Later, these results are applied to a class of control systems where the controller actuators are susceptible to failures. It should be noted that our results are delay independent, and the designed reliable controller is robust with respect to the actuator failures and to the system uncertainties. It is also observed that if the isolated continuous system is ISS and subjected to bounded impulsive effects, then the resulting impulsive system preserves the ISS property. Moreover, if the isolated continuous subsystems are all ISS and the interconnection amongst them is bounded from above, then the impulsive interconnected system is ISS provided that the degree of stability of each subsystem is larger than the magnitude of interconnection. If the underlying continuous system is unstable, then the input-to-state stabilization of the impulsive system is guaranteed if the stabilizing impulses are applied to the system frequently. As an implication to these results, if the input disturbance is zero, then the input-to-state stability (or stabilization) reduces to the stability (or stabilization) of the equilibrium state of the underlying disturbance-free system. A numerical example and simulations are provided to illustrate the proposed results.
期刊介绍:
Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.