WBAN中trust-untrust节点分类的深度学习方法

Q1 Engineering
Hala Shaker Mehdy, Nariman Jabbar Qasim, Fadya A.Habeeb, Zinah S. Jabbar, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi
{"title":"WBAN中trust-untrust节点分类的深度学习方法","authors":"Hala Shaker Mehdy, Nariman Jabbar Qasim, Fadya A.Habeeb, Zinah S. Jabbar, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi","doi":"10.21533/pen.v11i3.3579","DOIUrl":null,"url":null,"abstract":"The enormous growth in demand for WBAN services has resulted in a new set of security challenges. The capabilities of WBAN are developing to meet these needs. The complexity, heterogeneity, and instability of the mobile context make it difficult to complete these duties successfully. A more secure and flexible WBAN setting can be attained using a trust-untrust nodes classification, which is one method to satisfy the security needs of the WBAN. Considering this, we present a novel Deep Learning (DL) approach for classifying WBAN nodes using spatial attention based iterative DBN (SA-IDBN). Z-score normalization is used to remove repetitive entries from the input data. Then, Linear Discriminate Analysis (LDA) is employed to retrieve the features from the normalized data. In terms of accuracy, latency, recall, and f-measure, the suggested method's performance is examined and contrasted with some other current approaches. Regarding the classification of WBAN nodes, the results are more favorable for the suggested method than for the ones already in use.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep learning approach for trust-untrust nodes classification problem in WBAN\",\"authors\":\"Hala Shaker Mehdy, Nariman Jabbar Qasim, Fadya A.Habeeb, Zinah S. Jabbar, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi\",\"doi\":\"10.21533/pen.v11i3.3579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enormous growth in demand for WBAN services has resulted in a new set of security challenges. The capabilities of WBAN are developing to meet these needs. The complexity, heterogeneity, and instability of the mobile context make it difficult to complete these duties successfully. A more secure and flexible WBAN setting can be attained using a trust-untrust nodes classification, which is one method to satisfy the security needs of the WBAN. Considering this, we present a novel Deep Learning (DL) approach for classifying WBAN nodes using spatial attention based iterative DBN (SA-IDBN). Z-score normalization is used to remove repetitive entries from the input data. Then, Linear Discriminate Analysis (LDA) is employed to retrieve the features from the normalized data. In terms of accuracy, latency, recall, and f-measure, the suggested method's performance is examined and contrasted with some other current approaches. Regarding the classification of WBAN nodes, the results are more favorable for the suggested method than for the ones already in use.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

WBAN服务需求的巨大增长带来了一系列新的安全挑战。WBAN的能力正在发展以满足这些需求。移动环境的复杂性、异构性和不稳定性使其难以成功完成这些任务。使用信任-不信任节点分类可以获得更安全、更灵活的WBAN设置,这是满足WBAN安全需求的一种方法。考虑到这一点,我们提出了一种新的深度学习(DL)方法,用于使用基于空间注意力的迭代DBN(SA-IDBN)对WBAN节点进行分类。Z分数归一化用于从输入数据中去除重复条目。然后,采用线性判别分析(LDA)从归一化数据中提取特征。在准确性、延迟、回忆和f-measure方面,对所建议的方法的性能进行了检查,并与其他一些当前方法进行了对比。关于WBAN节点的分类,结果对所建议的方法比已经使用的方法更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep learning approach for trust-untrust nodes classification problem in WBAN
The enormous growth in demand for WBAN services has resulted in a new set of security challenges. The capabilities of WBAN are developing to meet these needs. The complexity, heterogeneity, and instability of the mobile context make it difficult to complete these duties successfully. A more secure and flexible WBAN setting can be attained using a trust-untrust nodes classification, which is one method to satisfy the security needs of the WBAN. Considering this, we present a novel Deep Learning (DL) approach for classifying WBAN nodes using spatial attention based iterative DBN (SA-IDBN). Z-score normalization is used to remove repetitive entries from the input data. Then, Linear Discriminate Analysis (LDA) is employed to retrieve the features from the normalized data. In terms of accuracy, latency, recall, and f-measure, the suggested method's performance is examined and contrasted with some other current approaches. Regarding the classification of WBAN nodes, the results are more favorable for the suggested method than for the ones already in use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
140
审稿时长
7 weeks
期刊介绍: *Industrial Engineering: 1 . Ergonomics 2 . Manufacturing 3 . TQM/quality engineering, reliability/maintenance engineering 4 . Production Planning 5 . Facility location, layout, design, materials handling 6 . Education, case studies 7 . Inventory, logistics, transportation, supply chain management 8 . Management 9 . Project/operations management, scheduling 10 . Information systems for production and management 11 . Innovation, knowledge management, organizational learning *Mechanical Engineering: 1 . Energy 2 . Machine Design 3 . Engineering Materials 4 . Manufacturing 5 . Mechatronics & Robotics 6 . Transportation 7 . Fluid Mechanics 8 . Optical Engineering 9 . Nanotechnology 10 . Maintenance & Safety *Computer Science: 1 . Computational Intelligence 2 . Computer Graphics 3 . Data Mining 4 . Human-Centered Computing 5 . Internet and Web Computing 6 . Mobile and Cloud computing 7 . Software Engineering 8 . Online Social Networks *Electrical and electronics engineering 1 . Sensor, automation and instrumentation technology 2 . Telecommunications 3 . Power systems 4 . Electronics 5 . Nanotechnology *Architecture: 1 . Advanced digital applications in architecture practice and computation within Generative processes of design 2 . Computer science, biology and ecology connected with structural engineering 3 . Technology and sustainability in architecture *Bioengineering: 1 . Medical Sciences 2 . Biological and Biomedical Sciences 3 . Agriculture and Life Sciences 4 . Biology and neuroscience 5 . Biological Sciences (Botany, Forestry, Cell Biology, Marine Biology, Zoology) [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信