奇异系数椭圆型方程的高可积性估计

Pub Date : 2018-04-09 DOI:10.1619/fesi.66.1
J. Foldes, T. Phan
{"title":"奇异系数椭圆型方程的高可积性估计","authors":"J. Foldes, T. Phan","doi":"10.1619/fesi.66.1","DOIUrl":null,"url":null,"abstract":"In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $\\text{div}[\\mathbf{A}(x) \\nabla u] = \\text{div}{\\mathbf{F}(x)}$, where the matrix $\\mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded. Global reverse Holder's regularity estimates for gradients of weak solutions are also obtained. Most importantly, we show, by providing an example, that boundedness and ellipticity of $\\mathbf{A}$ is not sufficient for higher integrability estimates even when the symmetric part of $\\mathbf{A}$ is the identity matrix. In addition, the example also shows the necessity of the dependence of $\\alpha$ in the Holder $C^\\alpha$-regularity theory on the \\textup{BMO}-semi norm of the skew-symmetric part of $\\mathbf{A}$. The paper is an extension of classical results obtained by N. G. Meyers (1963) in which the skew-symmetric part of $\\mathbf{A}$ is assumed to be zero.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Higher Integrability Estimates for Elliptic Equations with Singular Coefficients\",\"authors\":\"J. Foldes, T. Phan\",\"doi\":\"10.1619/fesi.66.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $\\\\text{div}[\\\\mathbf{A}(x) \\\\nabla u] = \\\\text{div}{\\\\mathbf{F}(x)}$, where the matrix $\\\\mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded. Global reverse Holder's regularity estimates for gradients of weak solutions are also obtained. Most importantly, we show, by providing an example, that boundedness and ellipticity of $\\\\mathbf{A}$ is not sufficient for higher integrability estimates even when the symmetric part of $\\\\mathbf{A}$ is the identity matrix. In addition, the example also shows the necessity of the dependence of $\\\\alpha$ in the Holder $C^\\\\alpha$-regularity theory on the \\\\textup{BMO}-semi norm of the skew-symmetric part of $\\\\mathbf{A}$. The paper is an extension of classical results obtained by N. G. Meyers (1963) in which the skew-symmetric part of $\\\\mathbf{A}$ is assumed to be zero.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.66.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.66.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了线性椭圆方程$\text{div}[\mathbf{A}(x) \nabla u] = \text{div}{\mathbf{F}(x)}$弱解的存在唯一性,其中矩阵$\mathbf{A}$刚好可测且其偏对称部分可以无界。得到了弱解梯度的全局逆Holder正则性估计。最重要的是,我们通过一个例子证明,即使$\mathbf{A}$的对称部分是单位矩阵,$\mathbf{A}$的有界性和椭圆性对于更高的可积性估计也是不够的。此外,实例还说明了Holder $C^\alpha$ -正则性理论中$\alpha$依赖于$\mathbf{A}$的偏对称部分的\textup{bmo} -半范数的必要性。本文是N. G. Meyers(1963)的经典结果的推广,其中假设$\mathbf{A}$的偏对称部分为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Higher Integrability Estimates for Elliptic Equations with Singular Coefficients
In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $\text{div}[\mathbf{A}(x) \nabla u] = \text{div}{\mathbf{F}(x)}$, where the matrix $\mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded. Global reverse Holder's regularity estimates for gradients of weak solutions are also obtained. Most importantly, we show, by providing an example, that boundedness and ellipticity of $\mathbf{A}$ is not sufficient for higher integrability estimates even when the symmetric part of $\mathbf{A}$ is the identity matrix. In addition, the example also shows the necessity of the dependence of $\alpha$ in the Holder $C^\alpha$-regularity theory on the \textup{BMO}-semi norm of the skew-symmetric part of $\mathbf{A}$. The paper is an extension of classical results obtained by N. G. Meyers (1963) in which the skew-symmetric part of $\mathbf{A}$ is assumed to be zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信