{"title":"对称广义特征值问题的增强代数子结构","authors":"V. Kalantzis, L. Horesh","doi":"10.1002/nla.2473","DOIUrl":null,"url":null,"abstract":"This article proposes a new substructuring algorithm to approximate the algebraically smallest eigenvalues and corresponding eigenvectors of a symmetric positive‐definite matrix pencil (A,M)$$ \\left(A,M\\right) $$ . The proposed approach partitions the graph associated with (A,M)$$ \\left(A,M\\right) $$ into a number of algebraic substructures and builds a Rayleigh–Ritz projection subspace by combining spectral information associated with the interior and interface variables of the algebraic domain. The subspace associated with interior variables is built by computing substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated with interface variables is built by computing eigenvectors and associated leading derivatives of linearized spectral Schur complements. The proposed algorithm can take advantage of multilevel partitionings when the size of the pencil. Experiments performed on problems stemming from discretizations of model problems showcase the efficiency of the proposed algorithm and verify that adding eigenvector derivatives can enhance the overall accuracy of the approximate eigenpairs, especially those associated with eigenvalues located near the origin.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced algebraic substructuring for symmetric generalized eigenvalue problems\",\"authors\":\"V. Kalantzis, L. Horesh\",\"doi\":\"10.1002/nla.2473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new substructuring algorithm to approximate the algebraically smallest eigenvalues and corresponding eigenvectors of a symmetric positive‐definite matrix pencil (A,M)$$ \\\\left(A,M\\\\right) $$ . The proposed approach partitions the graph associated with (A,M)$$ \\\\left(A,M\\\\right) $$ into a number of algebraic substructures and builds a Rayleigh–Ritz projection subspace by combining spectral information associated with the interior and interface variables of the algebraic domain. The subspace associated with interior variables is built by computing substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated with interface variables is built by computing eigenvectors and associated leading derivatives of linearized spectral Schur complements. The proposed algorithm can take advantage of multilevel partitionings when the size of the pencil. Experiments performed on problems stemming from discretizations of model problems showcase the efficiency of the proposed algorithm and verify that adding eigenvector derivatives can enhance the overall accuracy of the approximate eigenpairs, especially those associated with eigenvalues located near the origin.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2473\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2473","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enhanced algebraic substructuring for symmetric generalized eigenvalue problems
This article proposes a new substructuring algorithm to approximate the algebraically smallest eigenvalues and corresponding eigenvectors of a symmetric positive‐definite matrix pencil (A,M)$$ \left(A,M\right) $$ . The proposed approach partitions the graph associated with (A,M)$$ \left(A,M\right) $$ into a number of algebraic substructures and builds a Rayleigh–Ritz projection subspace by combining spectral information associated with the interior and interface variables of the algebraic domain. The subspace associated with interior variables is built by computing substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated with interface variables is built by computing eigenvectors and associated leading derivatives of linearized spectral Schur complements. The proposed algorithm can take advantage of multilevel partitionings when the size of the pencil. Experiments performed on problems stemming from discretizations of model problems showcase the efficiency of the proposed algorithm and verify that adding eigenvector derivatives can enhance the overall accuracy of the approximate eigenpairs, especially those associated with eigenvalues located near the origin.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.