{"title":"用傅里叶系数的某个子集来区分2次的厄米尖形式","authors":"Pramath Anamby, Soumya Das","doi":"10.5565/PUBLMAT6311911","DOIUrl":null,"url":null,"abstract":"We prove that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coefficients indexed by matrices whose determinants are essentially square-free. Moreover, we give a quantitative version of the above result. This is a consequence of the corresponding results for integral weight elliptic cusp forms, which are also treated in this paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Distinguishing Hermitian cusp forms of degree 2 by a certain subset of all Fourier coefficients\",\"authors\":\"Pramath Anamby, Soumya Das\",\"doi\":\"10.5565/PUBLMAT6311911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coefficients indexed by matrices whose determinants are essentially square-free. Moreover, we give a quantitative version of the above result. This is a consequence of the corresponding results for integral weight elliptic cusp forms, which are also treated in this paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6311911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6311911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distinguishing Hermitian cusp forms of degree 2 by a certain subset of all Fourier coefficients
We prove that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coefficients indexed by matrices whose determinants are essentially square-free. Moreover, we give a quantitative version of the above result. This is a consequence of the corresponding results for integral weight elliptic cusp forms, which are also treated in this paper.