一类双曲型奇异微分方程解的存在性与光滑性

IF 0.7 Q2 MATHEMATICS
M. Muratbekov, Yerik Bayandiyev
{"title":"一类双曲型奇异微分方程解的存在性与光滑性","authors":"M. Muratbekov, Yerik Bayandiyev","doi":"10.31489/2022m3/98-104","DOIUrl":null,"url":null,"abstract":"This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and smoothness of solutions of a singular differential equation of hyperbolic type\",\"authors\":\"M. Muratbekov, Yerik Bayandiyev\",\"doi\":\"10.31489/2022m3/98-104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m3/98-104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/98-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类双曲型奇异微分方程半周期Dirichlet问题解的存在性问题。还考虑了解的光滑性问题,即解的最大正则性问题。当系数是无穷远处的强增长函数时,这样的问题将是有趣的。首次得到了一类具有强增长系数的双曲型微分方程解的加权矫顽估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and smoothness of solutions of a singular differential equation of hyperbolic type
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信