狄利克雷卷积下算术函数的商

IF 0.4 Q4 MATHEMATICS
P. Haukkanen
{"title":"狄利克雷卷积下算术函数的商","authors":"P. Haukkanen","doi":"10.7546/nntdm.2023.29.2.185-194","DOIUrl":null,"url":null,"abstract":"We study existence of a solution of the arithmetical equation $f\\ast h = g$ in $f,$ where $f\\ast h$ is the Dirichlet convolution of arithmetical functions $f$ and $h,$ and derive an explicit expression for the solution. As applications we obtain expressions for the Möbius function $\\mu$ and the so-called totients. As applications we also present our results on the arithmetical equation $f\\ast h = g$ in the language of Cauchy convolution and further deconvolution in discrete linear systems.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quotients of arithmetical functions under the Dirichlet convolution\",\"authors\":\"P. Haukkanen\",\"doi\":\"10.7546/nntdm.2023.29.2.185-194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study existence of a solution of the arithmetical equation $f\\\\ast h = g$ in $f,$ where $f\\\\ast h$ is the Dirichlet convolution of arithmetical functions $f$ and $h,$ and derive an explicit expression for the solution. As applications we obtain expressions for the Möbius function $\\\\mu$ and the so-called totients. As applications we also present our results on the arithmetical equation $f\\\\ast h = g$ in the language of Cauchy convolution and further deconvolution in discrete linear systems.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.185-194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.185-194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了算术方程$f\ast h=g$在$f中解的存在性,其中$f\aast h$是算术函数$f$和$h,$的Dirichlet卷积,并导出了解的显式表达式。作为应用程序,我们获得了Möbius函数$\mu$和所谓的totients的表达式。作为应用,我们还用Cauchy卷积和离散线性系统中的进一步反褶积的语言给出了算术方程$f\ast h=g$的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quotients of arithmetical functions under the Dirichlet convolution
We study existence of a solution of the arithmetical equation $f\ast h = g$ in $f,$ where $f\ast h$ is the Dirichlet convolution of arithmetical functions $f$ and $h,$ and derive an explicit expression for the solution. As applications we obtain expressions for the Möbius function $\mu$ and the so-called totients. As applications we also present our results on the arithmetical equation $f\ast h = g$ in the language of Cauchy convolution and further deconvolution in discrete linear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信