随机非平稳脉冲序列模型

Q4 Engineering
L. Cohen
{"title":"随机非平稳脉冲序列模型","authors":"L. Cohen","doi":"10.15918/J.JBIT1004-0579.2021.055","DOIUrl":null,"url":null,"abstract":"A simple and mathematically tractable model of a nonstationary process is developed. The process is the sum of waves where the parameters of the waves are random. Explicit expressions for the mean and autocorrelation function at each position as a function of time are obtained. In the case of infinite time, the model evolves into a stationary process. The time-frequency distribution at each position is also obtained. An explicit example is given where the initial waves are Gaussian. The case where there is dispersion in the propagation is also discussed.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"228-237"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Random Nonstationary Pulse Train Model\",\"authors\":\"L. Cohen\",\"doi\":\"10.15918/J.JBIT1004-0579.2021.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and mathematically tractable model of a nonstationary process is developed. The process is the sum of waves where the parameters of the waves are random. Explicit expressions for the mean and autocorrelation function at each position as a function of time are obtained. In the case of infinite time, the model evolves into a stationary process. The time-frequency distribution at each position is also obtained. An explicit example is given where the initial waves are Gaussian. The case where there is dispersion in the propagation is also discussed.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"30 1\",\"pages\":\"228-237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.2021.055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

建立了一个简单的非平稳过程数学模型。该过程是波浪的总和,其中波浪的参数是随机的。获得了每个位置的平均值和自相关函数作为时间函数的显式表达式。在无限时间的情况下,模型演变成一个平稳的过程。还获得了每个位置处的时间-频率分布。给出了一个明确的例子,其中初始波是高斯波。还讨论了传播中存在色散的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Random Nonstationary Pulse Train Model
A simple and mathematically tractable model of a nonstationary process is developed. The process is the sum of waves where the parameters of the waves are random. Explicit expressions for the mean and autocorrelation function at each position as a function of time are obtained. In the case of infinite time, the model evolves into a stationary process. The time-frequency distribution at each position is also obtained. An explicit example is given where the initial waves are Gaussian. The case where there is dispersion in the propagation is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
2437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信