基于自适应多功能离散贝叶斯神经网络和高斯算子的医学图像分割

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Ramalingam, Selvakumaran Selvaraj, Visumathi James, Senthil Kumar Saravanaperumal, Buvaneswari Mohanram
{"title":"基于自适应多功能离散贝叶斯神经网络和高斯算子的医学图像分割","authors":"G. Ramalingam, Selvakumaran Selvaraj, Visumathi James, Senthil Kumar Saravanaperumal, Buvaneswari Mohanram","doi":"10.32985/ijeces.14.4.2","DOIUrl":null,"url":null,"abstract":"Bayesian statistics is incorporated into a neural network to create a Bayesian neural network (BNN) that adds posterior inference aims at preventing overfitting. BNNs are frequently used in medical image segmentation because they provide a stochastic viewpoint of segmentation approaches by producing a posterior probability with conventional limitations and allowing the depiction of uncertainty over following distributions. However, the actual efficacy of BNNs is constrained by the difficulty in selecting expressive discretization and accepting suitable following disseminations in a higher-order domain. Functional discretization BNN using Gaussian processes (GPs) that analyze medical image segmentation is proposed in this paper. Here, a discretization inference has been assumed in the functional domain by considering the former and dynamic consequent distributions to be GPs. An upsampling operator that utilizes a content-based feature extraction has been proposed. This is an adaptive method for extracting features after feature mapping is used in conjunction with the functional evidence lower bound and weights. This results in a loss-aware segmentation network that achieves an F1-score of 91.54%, accuracy of 90.24%, specificity of 88.54%, and precision of 80.24%.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Medical Images with Adaptable Multifunctional Discretization Bayesian Neural Networks and Gaussian Operation\",\"authors\":\"G. Ramalingam, Selvakumaran Selvaraj, Visumathi James, Senthil Kumar Saravanaperumal, Buvaneswari Mohanram\",\"doi\":\"10.32985/ijeces.14.4.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian statistics is incorporated into a neural network to create a Bayesian neural network (BNN) that adds posterior inference aims at preventing overfitting. BNNs are frequently used in medical image segmentation because they provide a stochastic viewpoint of segmentation approaches by producing a posterior probability with conventional limitations and allowing the depiction of uncertainty over following distributions. However, the actual efficacy of BNNs is constrained by the difficulty in selecting expressive discretization and accepting suitable following disseminations in a higher-order domain. Functional discretization BNN using Gaussian processes (GPs) that analyze medical image segmentation is proposed in this paper. Here, a discretization inference has been assumed in the functional domain by considering the former and dynamic consequent distributions to be GPs. An upsampling operator that utilizes a content-based feature extraction has been proposed. This is an adaptive method for extracting features after feature mapping is used in conjunction with the functional evidence lower bound and weights. This results in a loss-aware segmentation network that achieves an F1-score of 91.54%, accuracy of 90.24%, specificity of 88.54%, and precision of 80.24%.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.4.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将贝叶斯统计纳入神经网络以创建贝叶斯神经网络(BNN),该网络添加了旨在防止过拟合的后验推理。BNN经常用于医学图像分割,因为它们通过产生具有传统限制的后验概率并允许描述以下分布的不确定性,提供了分割方法的随机观点。然而,BNN的实际功效受到难以选择表达性离散化和在高阶域中接受合适的后续传播的限制。本文提出了一种利用高斯过程分析医学图像分割的函数离散化BNN。这里,通过将前者和动态结果分布考虑为GP,在函数域中假设了离散化推理。已经提出了一种利用基于内容的特征提取的上采样算子。这是一种在结合功能证据下界和权重使用特征映射后提取特征的自适应方法。这导致了损失感知分割网络,其F1得分为91.54%,准确率为90.24%,特异性为88.54%,准确度为80.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Medical Images with Adaptable Multifunctional Discretization Bayesian Neural Networks and Gaussian Operation
Bayesian statistics is incorporated into a neural network to create a Bayesian neural network (BNN) that adds posterior inference aims at preventing overfitting. BNNs are frequently used in medical image segmentation because they provide a stochastic viewpoint of segmentation approaches by producing a posterior probability with conventional limitations and allowing the depiction of uncertainty over following distributions. However, the actual efficacy of BNNs is constrained by the difficulty in selecting expressive discretization and accepting suitable following disseminations in a higher-order domain. Functional discretization BNN using Gaussian processes (GPs) that analyze medical image segmentation is proposed in this paper. Here, a discretization inference has been assumed in the functional domain by considering the former and dynamic consequent distributions to be GPs. An upsampling operator that utilizes a content-based feature extraction has been proposed. This is an adaptive method for extracting features after feature mapping is used in conjunction with the functional evidence lower bound and weights. This results in a loss-aware segmentation network that achieves an F1-score of 91.54%, accuracy of 90.24%, specificity of 88.54%, and precision of 80.24%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信