IBM Qiskit上的RSA素数分解

Q2 Computer Science
Matthew Evans Audric Rengkung, Arya Wicaksana
{"title":"IBM Qiskit上的RSA素数分解","authors":"Matthew Evans Audric Rengkung, Arya Wicaksana","doi":"10.58346/jisis.2023.i2.013","DOIUrl":null,"url":null,"abstract":"The advancement of quantum computing in recent years poses severe threats to the RSA public-key cryptosystem. The RSA cryptosystem fundamentally relies its security on the computational hardness of number theory problems: prime factorization (integer factoring). Shor’s quantum factoring algorithm could theoretically answer the computational problem in polynomial time. This paper contributes to the experiment and demonstration of Shor’s quantum factoring algorithm for RSA prime factorization using IBM Qiskit. The performance of the quantum program is evaluated based on user time and the success probability. The results show that a more significant public modulus N in the RSA public key improves factorization’s computational hardness, requiring more quantum bits to solve. A further enhancement on implementing Shor’s oracle function is essential in increasing success probability and reducing the number of shots required.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RSA Prime Factorization on IBM Qiskit\",\"authors\":\"Matthew Evans Audric Rengkung, Arya Wicaksana\",\"doi\":\"10.58346/jisis.2023.i2.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of quantum computing in recent years poses severe threats to the RSA public-key cryptosystem. The RSA cryptosystem fundamentally relies its security on the computational hardness of number theory problems: prime factorization (integer factoring). Shor’s quantum factoring algorithm could theoretically answer the computational problem in polynomial time. This paper contributes to the experiment and demonstration of Shor’s quantum factoring algorithm for RSA prime factorization using IBM Qiskit. The performance of the quantum program is evaluated based on user time and the success probability. The results show that a more significant public modulus N in the RSA public key improves factorization’s computational hardness, requiring more quantum bits to solve. A further enhancement on implementing Shor’s oracle function is essential in increasing success probability and reducing the number of shots required.\",\"PeriodicalId\":36718,\"journal\":{\"name\":\"Journal of Internet Services and Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jisis.2023.i2.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2023.i2.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

近年来量子计算的发展对RSA公钥密码系统构成了严重威胁。RSA密码系统的安全性从根本上依赖于数论问题的计算硬度:素数因子分解(整数因子分解)。Shor的量子因子分解算法在理论上可以解决多项式时间内的计算问题。本文利用IBM Qiskit对Shor的RSA素数因子分解量子因子分解算法进行了实验和演示。量子程序的性能是根据用户时间和成功概率来评估的。结果表明,RSA公钥中更显著的公模N提高了因子分解的计算硬度,需要更多的量子比特来求解。进一步增强Shor的预言功能对于提高成功概率和减少所需的注射次数至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSA Prime Factorization on IBM Qiskit
The advancement of quantum computing in recent years poses severe threats to the RSA public-key cryptosystem. The RSA cryptosystem fundamentally relies its security on the computational hardness of number theory problems: prime factorization (integer factoring). Shor’s quantum factoring algorithm could theoretically answer the computational problem in polynomial time. This paper contributes to the experiment and demonstration of Shor’s quantum factoring algorithm for RSA prime factorization using IBM Qiskit. The performance of the quantum program is evaluated based on user time and the success probability. The results show that a more significant public modulus N in the RSA public key improves factorization’s computational hardness, requiring more quantum bits to solve. A further enhancement on implementing Shor’s oracle function is essential in increasing success probability and reducing the number of shots required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信