手势和手语自动识别模型和方法的分析综述

Q3 Mathematics
D. Ryumin, I. Kagirov, A. Axyonov, Alexey Karpov
{"title":"手势和手语自动识别模型和方法的分析综述","authors":"D. Ryumin, I. Kagirov, A. Axyonov, Alexey Karpov","doi":"10.31799/1684-8853-2021-6-10-20","DOIUrl":null,"url":null,"abstract":"Introduction: Currently, the recognition of gestures and sign languages is one of the most intensively developing areas in computer vision and applied linguistics. The results of current investigations are applied in a wide range of areas, from sign language translation to gesture-based interfaces. In that regard, various systems and methods for the analysis of gestural data are being developed. Purpose: A detailed review of methods and a comparative analysis of current approaches in automatic recognition of gestures and sign languages. Results: The main gesture recognition problems are the following: detection of articulators (mainly hands), pose estimation and segmentation of gestures in the flow of speech. The authors conclude that the use of two-stream convolutional and recurrent neural network architectures is generally promising for efficient extraction and processing of spatial and temporal features, thus solving the problem of dynamic gestures and coarticulations. This solution, however, heavily depends on the quality and availability of data sets. Practical relevance: This review can be considered a contribution to the study of rapidly developing sign language recognition, irrespective to particular natural sign languages. The results of the work can be used in the development of software systems for automatic gesture and sign language recognition.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical review of models and methods for automatic recognition of gestures and sign languages\",\"authors\":\"D. Ryumin, I. Kagirov, A. Axyonov, Alexey Karpov\",\"doi\":\"10.31799/1684-8853-2021-6-10-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Currently, the recognition of gestures and sign languages is one of the most intensively developing areas in computer vision and applied linguistics. The results of current investigations are applied in a wide range of areas, from sign language translation to gesture-based interfaces. In that regard, various systems and methods for the analysis of gestural data are being developed. Purpose: A detailed review of methods and a comparative analysis of current approaches in automatic recognition of gestures and sign languages. Results: The main gesture recognition problems are the following: detection of articulators (mainly hands), pose estimation and segmentation of gestures in the flow of speech. The authors conclude that the use of two-stream convolutional and recurrent neural network architectures is generally promising for efficient extraction and processing of spatial and temporal features, thus solving the problem of dynamic gestures and coarticulations. This solution, however, heavily depends on the quality and availability of data sets. Practical relevance: This review can be considered a contribution to the study of rapidly developing sign language recognition, irrespective to particular natural sign languages. The results of the work can be used in the development of software systems for automatic gesture and sign language recognition.\",\"PeriodicalId\":36977,\"journal\":{\"name\":\"Informatsionno-Upravliaiushchie Sistemy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatsionno-Upravliaiushchie Sistemy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/1684-8853-2021-6-10-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2021-6-10-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目前,手势和手语识别是计算机视觉和应用语言学中发展最为活跃的领域之一。目前的研究结果应用于广泛的领域,从手语翻译到基于手势的界面。在这方面,正在开发用于分析手势数据的各种系统和方法。目的:对手势和手语的自动识别方法进行详细的综述和比较分析。结果:手势识别的主要问题有:发音器(主要是手)的检测、姿态估计和语音流中手势的分割。作者得出结论,使用双流卷积和循环神经网络架构通常有望有效地提取和处理时空特征,从而解决动态手势和协同发音问题。然而,这个解决方案在很大程度上依赖于数据集的质量和可用性。实际意义:这篇综述可以被认为是对快速发展的手语识别研究的贡献,而不考虑特定的自然手语。研究结果可用于手势和手语自动识别软件系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical review of models and methods for automatic recognition of gestures and sign languages
Introduction: Currently, the recognition of gestures and sign languages is one of the most intensively developing areas in computer vision and applied linguistics. The results of current investigations are applied in a wide range of areas, from sign language translation to gesture-based interfaces. In that regard, various systems and methods for the analysis of gestural data are being developed. Purpose: A detailed review of methods and a comparative analysis of current approaches in automatic recognition of gestures and sign languages. Results: The main gesture recognition problems are the following: detection of articulators (mainly hands), pose estimation and segmentation of gestures in the flow of speech. The authors conclude that the use of two-stream convolutional and recurrent neural network architectures is generally promising for efficient extraction and processing of spatial and temporal features, thus solving the problem of dynamic gestures and coarticulations. This solution, however, heavily depends on the quality and availability of data sets. Practical relevance: This review can be considered a contribution to the study of rapidly developing sign language recognition, irrespective to particular natural sign languages. The results of the work can be used in the development of software systems for automatic gesture and sign language recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信