阿贝尔范畴形成什么?

IF 1.4 4区 数学 Q1 MATHEMATICS
D. Kaledin
{"title":"阿贝尔范畴形成什么?","authors":"D. Kaledin","doi":"10.1070/RM10044","DOIUrl":null,"url":null,"abstract":"Given two finitely presentable Abelian categories and , we outline a construction of an Abelian category of functors from to , which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of and . The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology. Bibliography: 29 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"77 1","pages":"1 - 45"},"PeriodicalIF":1.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What do Abelian categories form?\",\"authors\":\"D. Kaledin\",\"doi\":\"10.1070/RM10044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two finitely presentable Abelian categories and , we outline a construction of an Abelian category of functors from to , which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of and . The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology. Bibliography: 29 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"77 1\",\"pages\":\"1 - 45\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了两个有限可表示的阿贝尔范畴和,给出了一个由和构成的函子阿贝尔范畴的构造,该构造具有良好的2范畴性质,并为和的派生范畴之间的稳定函子稳定范畴提供了一个显式模型。这种构造是绝对的,使得它不仅可以恢复Hochschild上同,而且可以恢复Mac Lane上同。参考书目:29篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What do Abelian categories form?
Given two finitely presentable Abelian categories and , we outline a construction of an Abelian category of functors from to , which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of and . The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology. Bibliography: 29 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信