模拟溶瘤病毒治疗的三维触觉交叉扩散系统的渐近行为

IF 3.6 1区 数学 Q1 MATHEMATICS, APPLIED
Yifu Wang, Chi Xu
{"title":"模拟溶瘤病毒治疗的三维触觉交叉扩散系统的渐近行为","authors":"Yifu Wang, Chi Xu","doi":"10.1142/s0218202523400043","DOIUrl":null,"url":null,"abstract":"This paper deals with an initial-boundary value problem for a doubly haptotactic cross-diffusion system arising from the oncolytic virotherapy \\begin{equation*} \\left\\{ \\begin{array}{lll} u_t=\\Delta u-\\nabla \\cdot(u\\nabla v)+\\mu u(1-u)-uz,\\\\ v_t=-(u+w)v,\\\\ w_t=\\Delta w-\\nabla \\cdot(w\\nabla v)-w+uz,\\\\ z_t=D_z\\Delta z-z-uz+\\beta w, \\end{array} \\right. \\end{equation*} in a smoothly bounded domain $\\Omega\\subset \\mathbb{R}^3$ with $\\beta>0$,~$\\mu>0$ and $D_z>0$. Based on a self-map argument, it is shown that under the assumption $\\beta \\max \\{1,\\|u_0\\|_{L^{\\infty}(\\Omega)}\\}<1+ (1+\\frac1{\\min_{x\\in \\Omega}u_0(x)})^{-1}$, this problem possesses a uniquely determined global classical solution $(u,v,w,z)$ for certain type of small data $(u_0,v_0,w_0,z_0)$. Moreover, $(u,v,w,z)$ is globally bounded and exponentially stabilizes towards its spatially homogeneous equilibrium %constant equilibrium $(1,0,0,0)$ as $t\\rightarrow \\infty$.","PeriodicalId":49860,"journal":{"name":"Mathematical Models & Methods in Applied Sciences","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy\",\"authors\":\"Yifu Wang, Chi Xu\",\"doi\":\"10.1142/s0218202523400043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an initial-boundary value problem for a doubly haptotactic cross-diffusion system arising from the oncolytic virotherapy \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{lll} u_t=\\\\Delta u-\\\\nabla \\\\cdot(u\\\\nabla v)+\\\\mu u(1-u)-uz,\\\\\\\\ v_t=-(u+w)v,\\\\\\\\ w_t=\\\\Delta w-\\\\nabla \\\\cdot(w\\\\nabla v)-w+uz,\\\\\\\\ z_t=D_z\\\\Delta z-z-uz+\\\\beta w, \\\\end{array} \\\\right. \\\\end{equation*} in a smoothly bounded domain $\\\\Omega\\\\subset \\\\mathbb{R}^3$ with $\\\\beta>0$,~$\\\\mu>0$ and $D_z>0$. Based on a self-map argument, it is shown that under the assumption $\\\\beta \\\\max \\\\{1,\\\\|u_0\\\\|_{L^{\\\\infty}(\\\\Omega)}\\\\}<1+ (1+\\\\frac1{\\\\min_{x\\\\in \\\\Omega}u_0(x)})^{-1}$, this problem possesses a uniquely determined global classical solution $(u,v,w,z)$ for certain type of small data $(u_0,v_0,w_0,z_0)$. Moreover, $(u,v,w,z)$ is globally bounded and exponentially stabilizes towards its spatially homogeneous equilibrium %constant equilibrium $(1,0,0,0)$ as $t\\\\rightarrow \\\\infty$.\",\"PeriodicalId\":49860,\"journal\":{\"name\":\"Mathematical Models & Methods in Applied Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models & Methods in Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202523400043\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models & Methods in Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218202523400043","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了由溶瘤病毒治疗引起的双触觉交叉扩散系统的初边值问题\beart{equipment*}\left{\bearth{array}{lll}u _t=\Delta u-\nabla \cdot(u \nabla v)+\mu u(1-u)-uz,\\v_t=-(u+w)v,\\w_t=\Delta w-\nabla\cdot。\在$\beta>0$、~$\mu>0$和$D_z>0$的光滑有界域$\Omega\subet\mathbb{R}^3$中结束{方程*}。基于自映射论点,证明了在假设$\beta\max\{1,\|u_0\|_{L^{\infty}(\Omega)}<1+(1+\frac1{\min_{x\in\Omega}u_0(x)})^{-1}$下,对于某些类型的小数据$(u_0,v_0,w_0,z_0)$,该问题具有唯一确定的全局经典解$(u,v,w,z)$。此外,$(u,v,w,z)$是全局有界的,并且以$t\rightarrow\infty$的形式向其空间齐次平衡%恒定平衡$(1,0,0,0)$指数稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy
This paper deals with an initial-boundary value problem for a doubly haptotactic cross-diffusion system arising from the oncolytic virotherapy \begin{equation*} \left\{ \begin{array}{lll} u_t=\Delta u-\nabla \cdot(u\nabla v)+\mu u(1-u)-uz,\\ v_t=-(u+w)v,\\ w_t=\Delta w-\nabla \cdot(w\nabla v)-w+uz,\\ z_t=D_z\Delta z-z-uz+\beta w, \end{array} \right. \end{equation*} in a smoothly bounded domain $\Omega\subset \mathbb{R}^3$ with $\beta>0$,~$\mu>0$ and $D_z>0$. Based on a self-map argument, it is shown that under the assumption $\beta \max \{1,\|u_0\|_{L^{\infty}(\Omega)}\}<1+ (1+\frac1{\min_{x\in \Omega}u_0(x)})^{-1}$, this problem possesses a uniquely determined global classical solution $(u,v,w,z)$ for certain type of small data $(u_0,v_0,w_0,z_0)$. Moreover, $(u,v,w,z)$ is globally bounded and exponentially stabilizes towards its spatially homogeneous equilibrium %constant equilibrium $(1,0,0,0)$ as $t\rightarrow \infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
17.10%
发文量
61
审稿时长
1 months
期刊介绍: The purpose of this journal is to provide a medium of exchange for scientists engaged in applied sciences (physics, mathematical physics, natural, and technological sciences) where there exists a non-trivial interplay between mathematics, mathematical modelling of real systems and mathematical and computer methods oriented towards the qualitative and quantitative analysis of real physical systems. The principal areas of interest of this journal are the following: 1.Mathematical modelling of systems in applied sciences; 2.Mathematical methods for the qualitative and quantitative analysis of models of mathematical physics and technological sciences; 3.Numerical and computer treatment of mathematical models or real systems. Special attention will be paid to the analysis of nonlinearities and stochastic aspects. Within the above limitation, scientists in all fields which employ mathematics are encouraged to submit research and review papers to the journal. Both theoretical and applied papers will be considered for publication. High quality, novelty of the content and potential for the applications to modern problems in applied sciences and technology will be the guidelines for the selection of papers to be published in the journal. This journal publishes only articles with original and innovative contents. Book reviews, announcements and tutorial articles will be featured occasionally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信