{"title":"具有数据扩充的易感-暴露-感染-恢复流行病模型的贝叶斯推断","authors":"Chouaib Beldjoudi, T. Kernane, Hamid El Maroufy","doi":"10.1080/08898480.2019.1656491","DOIUrl":null,"url":null,"abstract":"ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"27 1","pages":"232 - 258"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2019.1656491","citationCount":"3","resultStr":"{\"title\":\"Bayesian inference for a susceptible-exposed-infected-recovered epidemic model with data augmentation\",\"authors\":\"Chouaib Beldjoudi, T. Kernane, Hamid El Maroufy\",\"doi\":\"10.1080/08898480.2019.1656491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"27 1\",\"pages\":\"232 - 258\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2019.1656491\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2019.1656491\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2019.1656491","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
Bayesian inference for a susceptible-exposed-infected-recovered epidemic model with data augmentation
ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.
期刊介绍:
Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions.
The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.