具有数据扩充的易感-暴露-感染-恢复流行病模型的贝叶斯推断

IF 1.4 3区 社会学 Q3 DEMOGRAPHY
Chouaib Beldjoudi, T. Kernane, Hamid El Maroufy
{"title":"具有数据扩充的易感-暴露-感染-恢复流行病模型的贝叶斯推断","authors":"Chouaib Beldjoudi, T. Kernane, Hamid El Maroufy","doi":"10.1080/08898480.2019.1656491","DOIUrl":null,"url":null,"abstract":"ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"27 1","pages":"232 - 258"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2019.1656491","citationCount":"3","resultStr":"{\"title\":\"Bayesian inference for a susceptible-exposed-infected-recovered epidemic model with data augmentation\",\"authors\":\"Chouaib Beldjoudi, T. Kernane, Hamid El Maroufy\",\"doi\":\"10.1080/08898480.2019.1656491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"27 1\",\"pages\":\"232 - 258\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2019.1656491\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2019.1656491\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2019.1656491","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 3

摘要

采用贝叶斯数据增广方法对敏感-暴露-感染-恢复(SEIR)流行病模型的参数进行估计,该模型被表示为连续时间马尔可夫过程,并利用主方程的收敛性近似为扩散过程。利用Euler-Maruyama格式模拟的每对观测值之间的潜在数据点进行估计,除了模型参数外,还需要输入缺失数据。缺失数据和参数被视为随机变量,马尔可夫链蒙特卡罗算法更新缺失数据和参数值。数值仿真结果表明了所提出的马尔可夫链蒙特卡罗算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for a susceptible-exposed-infected-recovered epidemic model with data augmentation
ABSTRACT A Bayesian data-augmentation method allows estimating the parameters in a susceptible-exposed-infected-recovered (SEIR) epidemic model, which is formulated as a continuous-time Markov process and approximated by a diffusion process using the convergence of the master equation. The estimation was carried out with latent data points between every pair of observations simulated through the Euler-Maruyama scheme, which involves imputing the missing data in addition to the model parameters. The missing data and parameters are treated as random variables, and a Markov-chain Monte-Carlo algorithm updates the missing data and the parameter values. Numerical simulations show the effectiveness of the proposed Markov-chain Monte-Carlo algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信