{"title":"干沙下扩孔桩抗拔阻力的机器学习估计","authors":"Sharad Dadhich, J. Sharma, Madhav R. Madhira","doi":"10.2478/sjce-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.","PeriodicalId":43574,"journal":{"name":"Slovak Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of the Uplift Resistance for an Under-Reamed Pile in Dry Sand Using Machine Learning\",\"authors\":\"Sharad Dadhich, J. Sharma, Madhav R. Madhira\",\"doi\":\"10.2478/sjce-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.\",\"PeriodicalId\":43574,\"journal\":{\"name\":\"Slovak Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Slovak Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sjce-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovak Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sjce-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Estimation of the Uplift Resistance for an Under-Reamed Pile in Dry Sand Using Machine Learning
Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.