关于Kac-Sylvester矩阵的数值范围

IF 0.7 4区 数学 Q2 Mathematics
N. Bebiano, R. Lemos, G. Soares
{"title":"关于Kac-Sylvester矩阵的数值范围","authors":"N. Bebiano, R. Lemos, G. Soares","doi":"10.13001/ela.2023.7703","DOIUrl":null,"url":null,"abstract":"In this paper, the boundary generating curves and the numerical range of Kac-Sylvester matrices up to the order $9$ are characterized. Based on the obtained results and on several computational experiments performed with the Mathematica and MatLab programs, we conjecture that the found types of algebraic curves, namely ellipses and ovals, will appear for an arbitrary order.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the numerical range of Kac-Sylvester matrices\",\"authors\":\"N. Bebiano, R. Lemos, G. Soares\",\"doi\":\"10.13001/ela.2023.7703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the boundary generating curves and the numerical range of Kac-Sylvester matrices up to the order $9$ are characterized. Based on the obtained results and on several computational experiments performed with the Mathematica and MatLab programs, we conjecture that the found types of algebraic curves, namely ellipses and ovals, will appear for an arbitrary order.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7703\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7703","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了Kac-Sylvester矩阵的边界生成曲线和高达$9阶的数值范围。根据得到的结果和用Mathematica和MatLab程序进行的几次计算实验,我们推测所发现的代数曲线类型,即椭圆和椭圆,将出现任意顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the numerical range of Kac-Sylvester matrices
In this paper, the boundary generating curves and the numerical range of Kac-Sylvester matrices up to the order $9$ are characterized. Based on the obtained results and on several computational experiments performed with the Mathematica and MatLab programs, we conjecture that the found types of algebraic curves, namely ellipses and ovals, will appear for an arbitrary order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信