{"title":"基于GIS遥感的旅游景区水源地重金属污染溯源","authors":"J. Mo, X. Tian, W. Shen","doi":"10.15446/esrj.v25n2.84631","DOIUrl":null,"url":null,"abstract":"To effectively prevent heavy metal pollution in water sources in tourist attractions, clarify the degree of control of heavy metal pollution sources, and improve the accuracy of tracing results, a GIS-based remote sensing method of heavy metal pollution in tourist attractions is proposed. Using GIS spatial analysis method, the DEM elevation data monitored by remote sensing is obtained, the watershed geographic information is compiled, and the GPS obtains the longitude and latitude coordinates to locate the source of heavy metal pollution. The plug-in application framework is designed, and the watershed geographic information and plug-in application framework are integrated to build the pollution tracing platform. According to the mixing direction of pollutants after entering the water source, the migration and diffusion coordinate system of heavy metal pollution in the water source is established. The spatial-temporal distribution function model of heavy metal pollutants in water sources is constructed through the migration, transformation, and concentration of heavy metal pollutants in water sources. The tracing results of heavy metal pollution in water sources of scenic spots are obtained. The results showed that the order of variation coefficient of heavy metal pollution elements was Cr > Cd > Cu > Ni > Zn > Pb. The spatial distribution of heavy metal pollution elements was extremely uneven. There was a certain positive correlation between Ni and Cr, and the correlation coefficient of Cu and Zn was 0.78. The positive correlation was very significant, and the homology was very strong. Moreover, the identification result of the proposed method is very close to the real value, which can accurately trace the source of heavy metal pollution in the water source of tourist attractions, with small tracing error and high accuracy of tracing result evaluation.","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing\",\"authors\":\"J. Mo, X. Tian, W. Shen\",\"doi\":\"10.15446/esrj.v25n2.84631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To effectively prevent heavy metal pollution in water sources in tourist attractions, clarify the degree of control of heavy metal pollution sources, and improve the accuracy of tracing results, a GIS-based remote sensing method of heavy metal pollution in tourist attractions is proposed. Using GIS spatial analysis method, the DEM elevation data monitored by remote sensing is obtained, the watershed geographic information is compiled, and the GPS obtains the longitude and latitude coordinates to locate the source of heavy metal pollution. The plug-in application framework is designed, and the watershed geographic information and plug-in application framework are integrated to build the pollution tracing platform. According to the mixing direction of pollutants after entering the water source, the migration and diffusion coordinate system of heavy metal pollution in the water source is established. The spatial-temporal distribution function model of heavy metal pollutants in water sources is constructed through the migration, transformation, and concentration of heavy metal pollutants in water sources. The tracing results of heavy metal pollution in water sources of scenic spots are obtained. The results showed that the order of variation coefficient of heavy metal pollution elements was Cr > Cd > Cu > Ni > Zn > Pb. The spatial distribution of heavy metal pollution elements was extremely uneven. There was a certain positive correlation between Ni and Cr, and the correlation coefficient of Cu and Zn was 0.78. The positive correlation was very significant, and the homology was very strong. Moreover, the identification result of the proposed method is very close to the real value, which can accurately trace the source of heavy metal pollution in the water source of tourist attractions, with small tracing error and high accuracy of tracing result evaluation.\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v25n2.84631\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v25n2.84631","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing
To effectively prevent heavy metal pollution in water sources in tourist attractions, clarify the degree of control of heavy metal pollution sources, and improve the accuracy of tracing results, a GIS-based remote sensing method of heavy metal pollution in tourist attractions is proposed. Using GIS spatial analysis method, the DEM elevation data monitored by remote sensing is obtained, the watershed geographic information is compiled, and the GPS obtains the longitude and latitude coordinates to locate the source of heavy metal pollution. The plug-in application framework is designed, and the watershed geographic information and plug-in application framework are integrated to build the pollution tracing platform. According to the mixing direction of pollutants after entering the water source, the migration and diffusion coordinate system of heavy metal pollution in the water source is established. The spatial-temporal distribution function model of heavy metal pollutants in water sources is constructed through the migration, transformation, and concentration of heavy metal pollutants in water sources. The tracing results of heavy metal pollution in water sources of scenic spots are obtained. The results showed that the order of variation coefficient of heavy metal pollution elements was Cr > Cd > Cu > Ni > Zn > Pb. The spatial distribution of heavy metal pollution elements was extremely uneven. There was a certain positive correlation between Ni and Cr, and the correlation coefficient of Cu and Zn was 0.78. The positive correlation was very significant, and the homology was very strong. Moreover, the identification result of the proposed method is very close to the real value, which can accurately trace the source of heavy metal pollution in the water source of tourist attractions, with small tracing error and high accuracy of tracing result evaluation.
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.