智能的计算理论:反馈

Daniel Kovach
{"title":"智能的计算理论:反馈","authors":"Daniel Kovach","doi":"10.4236/IJMNTA.2017.62006","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the applications of feedback to intelligent agents. We show that it adds a momentum component to the learning algorithm. We derive via Lyapunov stability theory the condition necessary in order that the entropy minimization principal of computational intelligence is preserved in the presence of feedback.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"06 1","pages":"70-73"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Computational Theory of Intelligence: Feedback\",\"authors\":\"Daniel Kovach\",\"doi\":\"10.4236/IJMNTA.2017.62006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the applications of feedback to intelligent agents. We show that it adds a momentum component to the learning algorithm. We derive via Lyapunov stability theory the condition necessary in order that the entropy minimization principal of computational intelligence is preserved in the presence of feedback.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"06 1\",\"pages\":\"70-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2017.62006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2017.62006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了反馈在智能体中的应用。我们证明了它在学习算法中加入了一个动量分量。通过李雅普诺夫稳定性理论,导出了在反馈存在的情况下保持计算智能的熵最小化原则的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Computational Theory of Intelligence: Feedback
In this paper we discuss the applications of feedback to intelligent agents. We show that it adds a momentum component to the learning algorithm. We derive via Lyapunov stability theory the condition necessary in order that the entropy minimization principal of computational intelligence is preserved in the presence of feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信