{"title":"基于拉格朗日松弛的离散连续双层模型求解方法","authors":"Zaida E. Alarcón-Bernal, R. Aceves-García","doi":"10.4236/ojop.2019.83009","DOIUrl":null,"url":null,"abstract":"In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.","PeriodicalId":66387,"journal":{"name":"最优化(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrange Relaxation Based Approach to Solve a Discrete-Continous Bi-Level Model\",\"authors\":\"Zaida E. Alarcón-Bernal, R. Aceves-García\",\"doi\":\"10.4236/ojop.2019.83009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.\",\"PeriodicalId\":66387,\"journal\":{\"name\":\"最优化(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"最优化(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojop.2019.83009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"最优化(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojop.2019.83009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lagrange Relaxation Based Approach to Solve a Discrete-Continous Bi-Level Model
In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.