{"title":"多功能储热结构复合材料","authors":"G. Fredi, A. Dorigato, L. Fambri, A. Pegoretti","doi":"10.1088/2399-7532/abc60c","DOIUrl":null,"url":null,"abstract":"This review introduces the concept of thermal energy storage (TES) and phase change materials (PCMs), with a special focus on organic solid-liquid PCMs, their confinement methods and their thermal management (TM) applications al low-medium temperatures (0 °C–100 °C). It then investigates the approach of embedding TES and TM functionalities in structural materials, through the development of multifunctional polymer composites that could find applications where weight saving and temperature management are equally important. The concept of structural TES composite is presented through the description of three case studies about thermoplastic structural or semi-structural composites containing a paraffinic PCM: (i) a polyamide/glass laminate containing a microencapsulated or shape-stabilized paraffin; (ii) a polyamide-based composite reinforced with discontinuous carbon fibers and containing paraffin microcapsules, and (iii) a carbon fiber laminate with a reactive thermoplastic acrylic matrix and a microencapsulated paraffin.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multifunctional structural composites for thermal energy storage\",\"authors\":\"G. Fredi, A. Dorigato, L. Fambri, A. Pegoretti\",\"doi\":\"10.1088/2399-7532/abc60c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review introduces the concept of thermal energy storage (TES) and phase change materials (PCMs), with a special focus on organic solid-liquid PCMs, their confinement methods and their thermal management (TM) applications al low-medium temperatures (0 °C–100 °C). It then investigates the approach of embedding TES and TM functionalities in structural materials, through the development of multifunctional polymer composites that could find applications where weight saving and temperature management are equally important. The concept of structural TES composite is presented through the description of three case studies about thermoplastic structural or semi-structural composites containing a paraffinic PCM: (i) a polyamide/glass laminate containing a microencapsulated or shape-stabilized paraffin; (ii) a polyamide-based composite reinforced with discontinuous carbon fibers and containing paraffin microcapsules, and (iii) a carbon fiber laminate with a reactive thermoplastic acrylic matrix and a microencapsulated paraffin.\",\"PeriodicalId\":18949,\"journal\":{\"name\":\"Multifunctional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multifunctional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-7532/abc60c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/abc60c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Multifunctional structural composites for thermal energy storage
This review introduces the concept of thermal energy storage (TES) and phase change materials (PCMs), with a special focus on organic solid-liquid PCMs, their confinement methods and their thermal management (TM) applications al low-medium temperatures (0 °C–100 °C). It then investigates the approach of embedding TES and TM functionalities in structural materials, through the development of multifunctional polymer composites that could find applications where weight saving and temperature management are equally important. The concept of structural TES composite is presented through the description of three case studies about thermoplastic structural or semi-structural composites containing a paraffinic PCM: (i) a polyamide/glass laminate containing a microencapsulated or shape-stabilized paraffin; (ii) a polyamide-based composite reinforced with discontinuous carbon fibers and containing paraffin microcapsules, and (iii) a carbon fiber laminate with a reactive thermoplastic acrylic matrix and a microencapsulated paraffin.