逆高斯分布参数序贯最小风险点估计

Q3 Business, Management and Accounting
Ajit Chaturvedi, Sudeep R. Bapat, Neeraj Joshi
{"title":"逆高斯分布参数序贯最小风险点估计","authors":"Ajit Chaturvedi, Sudeep R. Bapat, Neeraj Joshi","doi":"10.1080/01966324.2019.1570883","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT In the first part of this article, a minimum risk estimation procedure is developed for estimating the mean μ of an inverse Gaussian distribution having an unknown scale parameter λ. A weighted squared-error loss function is assumed, and we aim at controlling the associated risk function. First and second-order asymptotic properties are also established for our stopping rule. The second part deals with developing a minimum risk estimation procedure for estimating the scale parameter λ of an inverse Gaussian distribution. We make use of a squared-error loss function here. The failure of a fixed sample size procedure is established and, hence, some sequential procedures are proposed to deal with this situation. For this estimation problem, we make use of the uniformly minimum variance unbiased estimator (UMVUE) and the minimum mean square estimator (MMSE) of the associated parameters. Second-order approximations are derived for the sequential procedures and improved estimators are proposed.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"20 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1570883","citationCount":"6","resultStr":"{\"title\":\"Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution\",\"authors\":\"Ajit Chaturvedi, Sudeep R. Bapat, Neeraj Joshi\",\"doi\":\"10.1080/01966324.2019.1570883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SYNOPTIC ABSTRACT In the first part of this article, a minimum risk estimation procedure is developed for estimating the mean μ of an inverse Gaussian distribution having an unknown scale parameter λ. A weighted squared-error loss function is assumed, and we aim at controlling the associated risk function. First and second-order asymptotic properties are also established for our stopping rule. The second part deals with developing a minimum risk estimation procedure for estimating the scale parameter λ of an inverse Gaussian distribution. We make use of a squared-error loss function here. The failure of a fixed sample size procedure is established and, hence, some sequential procedures are proposed to deal with this situation. For this estimation problem, we make use of the uniformly minimum variance unbiased estimator (UMVUE) and the minimum mean square estimator (MMSE) of the associated parameters. Second-order approximations are derived for the sequential procedures and improved estimators are proposed.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"39 1\",\"pages\":\"20 - 40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2019.1570883\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2019.1570883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1570883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文第一部分给出了一个最小风险估计方法,用于估计具有未知标度参数λ的反高斯分布的均值μ。假设一个加权误差平方损失函数,目的是控制相关的风险函数。并建立了停止规则的一阶和二阶渐近性质。第二部分讨论了一种用于估计反高斯分布的尺度参数λ的最小风险估计程序。我们利用了平方误差损失函数。确定了固定样本量程序的失效,因此,提出了一些顺序程序来处理这种情况。对于这个估计问题,我们利用了相关参数的一致最小方差无偏估计量(UMVUE)和最小均方估计量(MMSE)。推导了序列过程的二阶近似,并提出了改进的估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution
SYNOPTIC ABSTRACT In the first part of this article, a minimum risk estimation procedure is developed for estimating the mean μ of an inverse Gaussian distribution having an unknown scale parameter λ. A weighted squared-error loss function is assumed, and we aim at controlling the associated risk function. First and second-order asymptotic properties are also established for our stopping rule. The second part deals with developing a minimum risk estimation procedure for estimating the scale parameter λ of an inverse Gaussian distribution. We make use of a squared-error loss function here. The failure of a fixed sample size procedure is established and, hence, some sequential procedures are proposed to deal with this situation. For this estimation problem, we make use of the uniformly minimum variance unbiased estimator (UMVUE) and the minimum mean square estimator (MMSE) of the associated parameters. Second-order approximations are derived for the sequential procedures and improved estimators are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信