解开结的硬图

IF 0.7 4区 数学 Q2 MATHEMATICS
Benjamin A. Burton, Hsien-Chih Chang, M. Löffler, Clément Maria, Arnaud de Mesmay, S. Schleimer, E. Sedgwick, J. Spreer
{"title":"解开结的硬图","authors":"Benjamin A. Burton, Hsien-Chih Chang, M. Löffler, Clément Maria, Arnaud de Mesmay, S. Schleimer, E. Sedgwick, J. Spreer","doi":"10.1080/10586458.2022.2161676","DOIUrl":null,"url":null,"abstract":"We present three\"hard\"diagrams of the unknot. They require (at least) three extra crossings before they can be simplified to the trivial unknot diagram via Reidemeister moves in $\\mathbb{S}^2$. Both examples are constructed by applying previously proposed methods. The proof of their hardness uses significant computational resources. We also determine that no small\"standard\"example of a hard unknot diagram requires more than one extra crossing for Reidemeister moves in $\\mathbb{S}^2$.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hard Diagrams of the Unknot\",\"authors\":\"Benjamin A. Burton, Hsien-Chih Chang, M. Löffler, Clément Maria, Arnaud de Mesmay, S. Schleimer, E. Sedgwick, J. Spreer\",\"doi\":\"10.1080/10586458.2022.2161676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present three\\\"hard\\\"diagrams of the unknot. They require (at least) three extra crossings before they can be simplified to the trivial unknot diagram via Reidemeister moves in $\\\\mathbb{S}^2$. Both examples are constructed by applying previously proposed methods. The proof of their hardness uses significant computational resources. We also determine that no small\\\"standard\\\"example of a hard unknot diagram requires more than one extra crossing for Reidemeister moves in $\\\\mathbb{S}^2$.\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2022.2161676\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2161676","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们提出解结的三个“硬”图。它们需要(至少)三个额外的交叉点,才能通过Reidemeister在$\mathbb{S}^2$中的移动简化为简单的解结图。这两个例子都是通过应用先前提出的方法构建的。它们的硬度证明使用了大量的计算资源。我们还确定,对于硬解结图的小“标准”示例,$\mathbb{S}^2$中的Reidemeister移动,不需要超过一次的额外交叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hard Diagrams of the Unknot
We present three"hard"diagrams of the unknot. They require (at least) three extra crossings before they can be simplified to the trivial unknot diagram via Reidemeister moves in $\mathbb{S}^2$. Both examples are constructed by applying previously proposed methods. The proof of their hardness uses significant computational resources. We also determine that no small"standard"example of a hard unknot diagram requires more than one extra crossing for Reidemeister moves in $\mathbb{S}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Mathematics
Experimental Mathematics 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses. Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results. Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信