S. Kinoshita, Quan Wang, A. Kuroyanagi, M. Murayama, Y. Ujiié, H. Kawahata
{"title":"微x射线计算机断层扫描评估浮游有孔虫壳对海洋酸化和全球变暖的响应","authors":"S. Kinoshita, Quan Wang, A. Kuroyanagi, M. Murayama, Y. Ujiié, H. Kawahata","doi":"10.2517/PR200043","DOIUrl":null,"url":null,"abstract":"Abstract. Ocean acidification is now progressing, primarily due to the fact that the oceans have absorbed about 50% of the anthropogenic CO2 emitted since the industrial revolution. Many marine calcifying organisms, such as foraminifers and coccoliths, are known to build their shells using carbonate ions present in the seawaters surrounding them. Carbonate saturation state has a crucial influence on foraminiferal calcification, and foraminiferal shell production is known to be sensitive to increase in ocean pCO2. Moreover, ocean warming is also progressing along with acidification. Therefore, both environmental changes could affect foraminiferal shell formation. However, the relationship between foraminiferal shell parameters (i.e., size, weight, volume, and density) and ocean pCO2 or sea surface temperature (SST), or both, remains unclear. In this study, we used fossil planktic foraminifer Globigerinoides ruber (white) in a late Quaternary sediment core (MD98-2196) from the East China Sea to investigate a relationship between the shell parameters and oceanographic properties estimated based on the proxies from the same core. The foraminiferal shells were scanned using high-resolution micro-X-ray computed tomography (MXCT) to determine shell volume and density. The results showed that the size-normalized weight and the size-normalized volume of the shell had a negative correlation with the SST and atmospheric pCO2. The negative correlation between weight/volume and atmospheric pCO2 agrees with the previous laboratory experiments and geological record during the Pliocene. However, the correlation between weight/volume and SST should be interpreted with caution because it might be an artifact due to the correlation between SST and atmospheric pCO2. On the other hand, shell density is only weakly or insignificantly correlated with SST and pCO2, suggesting that these environmental parameters do not exert any impact on shell density. Thus, future ocean acidification will negatively affect the carbonate productivity of planktic foraminifers, even if it will not affect shell density. The temperature effect on the shell formation of the planktic foraminifers might be much less than ocean acidification considering controversial results of the temperature sensitivity in previous studies.","PeriodicalId":54645,"journal":{"name":"Paleontological Research","volume":"26 1","pages":"390 - 404"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Planktic Foraminiferal Shells to Ocean Acidification and Global Warming Assessed Using Micro-X-Ray Computed Tomography\",\"authors\":\"S. Kinoshita, Quan Wang, A. Kuroyanagi, M. Murayama, Y. Ujiié, H. Kawahata\",\"doi\":\"10.2517/PR200043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Ocean acidification is now progressing, primarily due to the fact that the oceans have absorbed about 50% of the anthropogenic CO2 emitted since the industrial revolution. Many marine calcifying organisms, such as foraminifers and coccoliths, are known to build their shells using carbonate ions present in the seawaters surrounding them. Carbonate saturation state has a crucial influence on foraminiferal calcification, and foraminiferal shell production is known to be sensitive to increase in ocean pCO2. Moreover, ocean warming is also progressing along with acidification. Therefore, both environmental changes could affect foraminiferal shell formation. However, the relationship between foraminiferal shell parameters (i.e., size, weight, volume, and density) and ocean pCO2 or sea surface temperature (SST), or both, remains unclear. In this study, we used fossil planktic foraminifer Globigerinoides ruber (white) in a late Quaternary sediment core (MD98-2196) from the East China Sea to investigate a relationship between the shell parameters and oceanographic properties estimated based on the proxies from the same core. The foraminiferal shells were scanned using high-resolution micro-X-ray computed tomography (MXCT) to determine shell volume and density. The results showed that the size-normalized weight and the size-normalized volume of the shell had a negative correlation with the SST and atmospheric pCO2. The negative correlation between weight/volume and atmospheric pCO2 agrees with the previous laboratory experiments and geological record during the Pliocene. However, the correlation between weight/volume and SST should be interpreted with caution because it might be an artifact due to the correlation between SST and atmospheric pCO2. On the other hand, shell density is only weakly or insignificantly correlated with SST and pCO2, suggesting that these environmental parameters do not exert any impact on shell density. Thus, future ocean acidification will negatively affect the carbonate productivity of planktic foraminifers, even if it will not affect shell density. The temperature effect on the shell formation of the planktic foraminifers might be much less than ocean acidification considering controversial results of the temperature sensitivity in previous studies.\",\"PeriodicalId\":54645,\"journal\":{\"name\":\"Paleontological Research\",\"volume\":\"26 1\",\"pages\":\"390 - 404\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleontological Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2517/PR200043\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleontological Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2517/PR200043","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
Response of Planktic Foraminiferal Shells to Ocean Acidification and Global Warming Assessed Using Micro-X-Ray Computed Tomography
Abstract. Ocean acidification is now progressing, primarily due to the fact that the oceans have absorbed about 50% of the anthropogenic CO2 emitted since the industrial revolution. Many marine calcifying organisms, such as foraminifers and coccoliths, are known to build their shells using carbonate ions present in the seawaters surrounding them. Carbonate saturation state has a crucial influence on foraminiferal calcification, and foraminiferal shell production is known to be sensitive to increase in ocean pCO2. Moreover, ocean warming is also progressing along with acidification. Therefore, both environmental changes could affect foraminiferal shell formation. However, the relationship between foraminiferal shell parameters (i.e., size, weight, volume, and density) and ocean pCO2 or sea surface temperature (SST), or both, remains unclear. In this study, we used fossil planktic foraminifer Globigerinoides ruber (white) in a late Quaternary sediment core (MD98-2196) from the East China Sea to investigate a relationship between the shell parameters and oceanographic properties estimated based on the proxies from the same core. The foraminiferal shells were scanned using high-resolution micro-X-ray computed tomography (MXCT) to determine shell volume and density. The results showed that the size-normalized weight and the size-normalized volume of the shell had a negative correlation with the SST and atmospheric pCO2. The negative correlation between weight/volume and atmospheric pCO2 agrees with the previous laboratory experiments and geological record during the Pliocene. However, the correlation between weight/volume and SST should be interpreted with caution because it might be an artifact due to the correlation between SST and atmospheric pCO2. On the other hand, shell density is only weakly or insignificantly correlated with SST and pCO2, suggesting that these environmental parameters do not exert any impact on shell density. Thus, future ocean acidification will negatively affect the carbonate productivity of planktic foraminifers, even if it will not affect shell density. The temperature effect on the shell formation of the planktic foraminifers might be much less than ocean acidification considering controversial results of the temperature sensitivity in previous studies.
期刊介绍:
Paleonotological Research (PR) is a quarterly, peer-reviewed international journal, which focuses on original contributions primarily in the area of paleontology but also covering a wide range of allied sciences. It has been published since 1997 as a successor to the former journal Transactions and Proceedings of the Palaeontological Society of Japan. The emphasis of contributions will include global and local perspectives, and contents can cover all ages (Precambrian to the Quaternary, including the present time).