{"title":"利用沉积物驱动的冰山模型模拟Heinrich层的产生","authors":"M. Fendrock, A. Condron, D. McGee","doi":"10.1029/2022PA004583","DOIUrl":null,"url":null,"abstract":"In the North Atlantic, relatively coarse grained sediments can be found periodically throughout sediment cores spanning the Last Glacial Period. These sediments were rafted by icebergs released from the Laurentide Ice Sheet (LIS) in so‐called Heinrich Events. These “Heinrich Layers” coincide with records of global climate change, suggesting that the impact of these events was propagated beyond the North Atlantic. In order to best understand the climate context and significance of Heinrich Events, it is important to constrain the mechanism for their release from the LIS and the nature of the ice sheet itself. One approach for investigating the source of Heinrich Events is to understand the sediment load of icebergs involved, information that would inform interpretations of how those icebergs were produced. By simulating Heinrich Events in a high resolution global climate model (20–40 times the resolution of previous studies), this work investigates the processes involved in the deposition of Heinrich Layers in the North Atlantic. In these simulations, the same volume of sediment is distributed differently through the same volume of icebergs, producing profoundly different sediment records. Due to the high resolution of the model, these simulated sedimentary layers can be inspected in great detail, revealing nuances of the deposit. Only when sediment is distributed throughout the entire iceberg does the model produce a sediment pattern in agreement with observations, yet icebergs with this sediment distribution are not observed in the modern‐day.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Production of Heinrich Layers With a Sediment‐Enabled Iceberg Model\",\"authors\":\"M. Fendrock, A. Condron, D. McGee\",\"doi\":\"10.1029/2022PA004583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the North Atlantic, relatively coarse grained sediments can be found periodically throughout sediment cores spanning the Last Glacial Period. These sediments were rafted by icebergs released from the Laurentide Ice Sheet (LIS) in so‐called Heinrich Events. These “Heinrich Layers” coincide with records of global climate change, suggesting that the impact of these events was propagated beyond the North Atlantic. In order to best understand the climate context and significance of Heinrich Events, it is important to constrain the mechanism for their release from the LIS and the nature of the ice sheet itself. One approach for investigating the source of Heinrich Events is to understand the sediment load of icebergs involved, information that would inform interpretations of how those icebergs were produced. By simulating Heinrich Events in a high resolution global climate model (20–40 times the resolution of previous studies), this work investigates the processes involved in the deposition of Heinrich Layers in the North Atlantic. In these simulations, the same volume of sediment is distributed differently through the same volume of icebergs, producing profoundly different sediment records. Due to the high resolution of the model, these simulated sedimentary layers can be inspected in great detail, revealing nuances of the deposit. Only when sediment is distributed throughout the entire iceberg does the model produce a sediment pattern in agreement with observations, yet icebergs with this sediment distribution are not observed in the modern‐day.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2022PA004583\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004583","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling the Production of Heinrich Layers With a Sediment‐Enabled Iceberg Model
In the North Atlantic, relatively coarse grained sediments can be found periodically throughout sediment cores spanning the Last Glacial Period. These sediments were rafted by icebergs released from the Laurentide Ice Sheet (LIS) in so‐called Heinrich Events. These “Heinrich Layers” coincide with records of global climate change, suggesting that the impact of these events was propagated beyond the North Atlantic. In order to best understand the climate context and significance of Heinrich Events, it is important to constrain the mechanism for their release from the LIS and the nature of the ice sheet itself. One approach for investigating the source of Heinrich Events is to understand the sediment load of icebergs involved, information that would inform interpretations of how those icebergs were produced. By simulating Heinrich Events in a high resolution global climate model (20–40 times the resolution of previous studies), this work investigates the processes involved in the deposition of Heinrich Layers in the North Atlantic. In these simulations, the same volume of sediment is distributed differently through the same volume of icebergs, producing profoundly different sediment records. Due to the high resolution of the model, these simulated sedimentary layers can be inspected in great detail, revealing nuances of the deposit. Only when sediment is distributed throughout the entire iceberg does the model produce a sediment pattern in agreement with observations, yet icebergs with this sediment distribution are not observed in the modern‐day.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.