门槛粗糙heston模型下障碍期权的估值

IF 5.4 2区 管理学 Q1 BUSINESS, FINANCE
Kevin Z. Tong , Allen Liu
{"title":"门槛粗糙heston模型下障碍期权的估值","authors":"Kevin Z. Tong ,&nbsp;Allen Liu","doi":"10.1016/j.jmse.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a novel model for pricing double barrier options, where the asset price is modeled as a threshold geometric Brownian motion time changed by an integrated activity rate process, which is driven by the convolution of a fractional kernel with the CIR process. The new model both captures the leverage effect and produces rough paths for the volatility process. The model also nests the threshold diffusion, Heston and rough Heston models. We can derive analytical formulas for the double barrier option prices based on the eigenfunction expansion method. We also implement the model and numerically investigate the sensitivities of option prices with respect to the parameters of the model.</p></div>","PeriodicalId":36172,"journal":{"name":"Journal of Management Science and Engineering","volume":"8 1","pages":"Pages 15-31"},"PeriodicalIF":5.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The valuation of barrier options under a threshold rough Heston model\",\"authors\":\"Kevin Z. Tong ,&nbsp;Allen Liu\",\"doi\":\"10.1016/j.jmse.2022.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a novel model for pricing double barrier options, where the asset price is modeled as a threshold geometric Brownian motion time changed by an integrated activity rate process, which is driven by the convolution of a fractional kernel with the CIR process. The new model both captures the leverage effect and produces rough paths for the volatility process. The model also nests the threshold diffusion, Heston and rough Heston models. We can derive analytical formulas for the double barrier option prices based on the eigenfunction expansion method. We also implement the model and numerically investigate the sensitivities of option prices with respect to the parameters of the model.</p></div>\",\"PeriodicalId\":36172,\"journal\":{\"name\":\"Journal of Management Science and Engineering\",\"volume\":\"8 1\",\"pages\":\"Pages 15-31\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Science and Engineering\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096232022000427\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Science and Engineering","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096232022000427","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的双障碍期权定价模型,其中资产价格被建模为一个由分数核与CIR过程卷积驱动的综合活动率过程改变的阈值几何布朗运动时间。新模型既捕捉了杠杆效应,又为波动过程提供了粗略的路径。该模型还嵌套了阈值扩散模型、赫斯顿模型和粗糙赫斯顿模型。基于特征函数展开法,推导出双障碍期权价格的解析公式。我们还实现了模型,并数值研究了期权价格相对于模型参数的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The valuation of barrier options under a threshold rough Heston model

In this paper, we propose a novel model for pricing double barrier options, where the asset price is modeled as a threshold geometric Brownian motion time changed by an integrated activity rate process, which is driven by the convolution of a fractional kernel with the CIR process. The new model both captures the leverage effect and produces rough paths for the volatility process. The model also nests the threshold diffusion, Heston and rough Heston models. We can derive analytical formulas for the double barrier option prices based on the eigenfunction expansion method. We also implement the model and numerically investigate the sensitivities of option prices with respect to the parameters of the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Management Science and Engineering
Journal of Management Science and Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.30
自引率
3.00%
发文量
37
审稿时长
108 days
期刊介绍: The Journal of Engineering and Applied Science (JEAS) is the official journal of the Faculty of Engineering, Cairo University (CUFE), Egypt, established in 1816. The Journal of Engineering and Applied Science publishes fundamental and applied research articles and reviews spanning different areas of engineering disciplines, applications, and interdisciplinary topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信