具有切换收益的几何布朗运动极大值的折现最优停止问题

Pub Date : 2021-03-01 DOI:10.1017/apr.2020.57
P. Gapeev, P. Kort, M. Lavrutich
{"title":"具有切换收益的几何布朗运动极大值的折现最优停止问题","authors":"P. Gapeev, P. Kort, M. Lavrutich","doi":"10.1017/apr.2020.57","DOIUrl":null,"url":null,"abstract":"Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/apr.2020.57","citationCount":"7","resultStr":"{\"title\":\"Discounted Optimal Stopping Problems for Maxima of Geometric Brownian Motions With Switching Payoffs\",\"authors\":\"P. Gapeev, P. Kort, M. Lavrutich\",\"doi\":\"10.1017/apr.2020.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/apr.2020.57\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2020.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2020.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要根据具有两个状态的连续时间马尔可夫链的动力学,我们给出了具有收益切换的几何布朗运动的运行最大值的一些折扣最优停止问题的闭式解。证明是基于将原始问题简化为等效自由边界问题,并通过光滑拟合和正反射条件求解后一个问题。我们证明了最优停止边界被确定为一阶非线性常微分方程的相关二维系统的最大解。所获得的结果与Black–Merton–Scholes模型中具有固定和浮动沉没成本的实际切换回溯期权的估值有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Discounted Optimal Stopping Problems for Maxima of Geometric Brownian Motions With Switching Payoffs
Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信