FCSR连接整数:高效生成、测试、计数

IF 0.3 4区 工程技术 Q4 COMPUTER SCIENCE, THEORY & METHODS
P. Mishra, S. Ramola
{"title":"FCSR连接整数:高效生成、测试、计数","authors":"P. Mishra, S. Ramola","doi":"10.1080/01611194.2021.1914775","DOIUrl":null,"url":null,"abstract":"Abstract The period of a binary sequence generated by feedback with carry shift register (FCSR) depends on the connection integer (q) of the register. We define FCSR primes as primes generating maximum possible period sequences when used as connection integer of an FCSR. Hence, to design good FCSR pseudorandom generators, one needs suitable feedback primes. The authors of this article study some properties about these primes and give algorithms to generate some of them. The first algorithm is somewhat straightforward and is based on the criterion given in Arnault and Berger. We propose two new algorithms for the efficient generation of FCSR primes. Comparison between these algorithms, supported by experimental and analytical results is presented. Further, we address the question of quantification of such primes and derive some explicit bounds.","PeriodicalId":55202,"journal":{"name":"Cryptologia","volume":"46 1","pages":"439 - 460"},"PeriodicalIF":0.3000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01611194.2021.1914775","citationCount":"0","resultStr":"{\"title\":\"FCSR connection integers: efficient generation, testing and counting\",\"authors\":\"P. Mishra, S. Ramola\",\"doi\":\"10.1080/01611194.2021.1914775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The period of a binary sequence generated by feedback with carry shift register (FCSR) depends on the connection integer (q) of the register. We define FCSR primes as primes generating maximum possible period sequences when used as connection integer of an FCSR. Hence, to design good FCSR pseudorandom generators, one needs suitable feedback primes. The authors of this article study some properties about these primes and give algorithms to generate some of them. The first algorithm is somewhat straightforward and is based on the criterion given in Arnault and Berger. We propose two new algorithms for the efficient generation of FCSR primes. Comparison between these algorithms, supported by experimental and analytical results is presented. Further, we address the question of quantification of such primes and derive some explicit bounds.\",\"PeriodicalId\":55202,\"journal\":{\"name\":\"Cryptologia\",\"volume\":\"46 1\",\"pages\":\"439 - 460\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01611194.2021.1914775\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptologia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01611194.2021.1914775\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptologia","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01611194.2021.1914775","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要进位移位寄存器(FCSR)反馈产生的二进制序列的周期取决于寄存器的连接整数(q)。我们将FCSR素数定义为当用作FCSR的连接整数时生成最大可能周期序列的素数。因此,要设计好的FCSR伪随机发生器,需要合适的反馈素数。本文研究了这些素数的一些性质,并给出了生成这些素数的算法。第一种算法有点简单,基于Arnault和Berger中给出的标准。我们提出了两种有效生成FCSR素数的新算法。在实验和分析结果的支持下,对这些算法进行了比较。此外,我们讨论了这些素数的量化问题,并导出了一些显式边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FCSR connection integers: efficient generation, testing and counting
Abstract The period of a binary sequence generated by feedback with carry shift register (FCSR) depends on the connection integer (q) of the register. We define FCSR primes as primes generating maximum possible period sequences when used as connection integer of an FCSR. Hence, to design good FCSR pseudorandom generators, one needs suitable feedback primes. The authors of this article study some properties about these primes and give algorithms to generate some of them. The first algorithm is somewhat straightforward and is based on the criterion given in Arnault and Berger. We propose two new algorithms for the efficient generation of FCSR primes. Comparison between these algorithms, supported by experimental and analytical results is presented. Further, we address the question of quantification of such primes and derive some explicit bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryptologia
Cryptologia 工程技术-计算机:理论方法
自引率
33.30%
发文量
31
审稿时长
24 months
期刊介绍: Cryptologia is the only scholarly journal in the world dealing with the history, the technology, and the effect of the most important form of intelligence in the world today - communications intelligence. It fosters the study of all aspects of cryptology -- technical as well as historical and cultural. The journal"s articles have broken many new paths in intelligence history. They have told for the first time how a special agency prepared information from codebreaking for President Roosevelt, have described the ciphers of Lewis Carroll, revealed details of Hermann Goering"s wiretapping agency, published memoirs - written for it -- of some World War II American codebreakers, disclosed how American codebreaking affected the structure of the United Nations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信