碳纳米管接枝八(环氧环己基)POSS扩链聚乳酸泡沫的制备与表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Liu, Xunxian Zhu, Hongxiang Gao, Xiangdong Su, Xian Wu
{"title":"碳纳米管接枝八(环氧环己基)POSS扩链聚乳酸泡沫的制备与表征","authors":"Wei Liu, Xunxian Zhu, Hongxiang Gao, Xiangdong Su, Xian Wu","doi":"10.1177/0262489320912521","DOIUrl":null,"url":null,"abstract":"Improving foamability of poly (lactic acid) (PLA) resin is a key issue for its critical foaming applications with high-performance and ultralow density. However, owing to the rheological nature of linear PLA chain structure with relatively low molecular weight, the overall foamability of PLA resin cannot meet the processing requirements of foaming purpose. Here, we describe a simple and versatile technique to prepare high foamability PLA resin by inducing chain extender through grafting octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (POSS) on carbon nanotubes (CNT). After the orderly assemble of the two nanoparticles, an obvious increase in melt elasticity of PLA is observed. The enhanced melt elasticity of PLA had a significant effect on controlling subsequent foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA rigid foam was obtained with a proper content of CNT-POSS. Eventually, the expansion ratio of chain-extended PLA foam was 13 times higher than that of unmodified PLA foam. The proposed design methodology will potentially pave a way for designing and preparing high-performance PLA rigid foam products.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320912521","citationCount":"6","resultStr":"{\"title\":\"Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes\",\"authors\":\"Wei Liu, Xunxian Zhu, Hongxiang Gao, Xiangdong Su, Xian Wu\",\"doi\":\"10.1177/0262489320912521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving foamability of poly (lactic acid) (PLA) resin is a key issue for its critical foaming applications with high-performance and ultralow density. However, owing to the rheological nature of linear PLA chain structure with relatively low molecular weight, the overall foamability of PLA resin cannot meet the processing requirements of foaming purpose. Here, we describe a simple and versatile technique to prepare high foamability PLA resin by inducing chain extender through grafting octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (POSS) on carbon nanotubes (CNT). After the orderly assemble of the two nanoparticles, an obvious increase in melt elasticity of PLA is observed. The enhanced melt elasticity of PLA had a significant effect on controlling subsequent foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA rigid foam was obtained with a proper content of CNT-POSS. Eventually, the expansion ratio of chain-extended PLA foam was 13 times higher than that of unmodified PLA foam. The proposed design methodology will potentially pave a way for designing and preparing high-performance PLA rigid foam products.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489320912521\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489320912521\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489320912521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

提高聚乳酸(PLA)树脂的发泡性是其高性能、超低密度发泡应用的关键问题。然而,由于分子量相对较低的线性PLA链结构的流变性,PLA树脂的整体发泡性不能满足发泡目的的加工要求。在这里,我们描述了一种简单而通用的技术,通过在碳纳米管(CNT)上接枝八(环氧环己基)多面体低聚倍半硅氧烷(POSS)诱导扩链剂来制备高发泡性PLA树脂。两种纳米颗粒有序组装后,PLA的熔体弹性明显增加。PLA熔体弹性的增强对控制后续发泡行为有显著影响。因此,在CNT-POSS含量适当的情况下,获得了均匀且精细的PLA刚性泡沫的细胞形态。最终,扩链PLA泡沫的膨胀率比未改性PLA泡沫高13倍。所提出的设计方法将有可能为设计和制备高性能PLA硬质泡沫产品铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes
Improving foamability of poly (lactic acid) (PLA) resin is a key issue for its critical foaming applications with high-performance and ultralow density. However, owing to the rheological nature of linear PLA chain structure with relatively low molecular weight, the overall foamability of PLA resin cannot meet the processing requirements of foaming purpose. Here, we describe a simple and versatile technique to prepare high foamability PLA resin by inducing chain extender through grafting octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (POSS) on carbon nanotubes (CNT). After the orderly assemble of the two nanoparticles, an obvious increase in melt elasticity of PLA is observed. The enhanced melt elasticity of PLA had a significant effect on controlling subsequent foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA rigid foam was obtained with a proper content of CNT-POSS. Eventually, the expansion ratio of chain-extended PLA foam was 13 times higher than that of unmodified PLA foam. The proposed design methodology will potentially pave a way for designing and preparing high-performance PLA rigid foam products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信