山地森林地上生物量GEDI波形的斜率自适应度量评估

遥感学报 Pub Date : 2021-08-27 DOI:10.34133/2021/9805364
W. Ni, Zhiyu Zhang, G. Sun
{"title":"山地森林地上生物量GEDI波形的斜率自适应度量评估","authors":"W. Ni, Zhiyu Zhang, G. Sun","doi":"10.34133/2021/9805364","DOIUrl":null,"url":null,"abstract":"Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas\",\"authors\":\"W. Ni, Zhiyu Zhang, G. Sun\",\"doi\":\"10.34133/2021/9805364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9805364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9805364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

地形斜坡引起的大足迹激光雷达的波形加宽效应仍然是限制山区森林地上生物量估计精度的一大挑战。在我们之前的研究中提出了波形的斜率自适应度量。然而,由于没有足够的参考数据,其验证受到限制。本研究利用全球生态系统动力学调查(GEDI)任务获得的数据对坡度自适应指标进行了充分验证,同时探索了GEDI波形对森林AGB的估计。采用了三种类型的波形度量,包括斜率自适应度量(RHT)、相对于地峰的典型高度度量(RH)和波形参数(WP)。除了地形坡度外,还探讨了其他两个因素,包括地理位置问题和波形的信号起点和终点。结果显示,第一个版本GEDI数据产品中的足迹地理位置被转移到标称地理位置的左前方,距离约为24 m~30 m,并且在第二版本中被基本校正;第四组和第五组波形的信号起点和终点的性能比四组中的其余组差,因为它们分别使用了最大和最小信号阈值。以机载激光扫描仪(ALS)数据为参考,从航天飞机雷达地形任务(SRTM DEM)的数字高程模型中提取的地形坡度均方根误差(RMSE)约为3°。基于RH指标的森林AGB估计模型的确定系数(R2)从0.48提高到0.68,RMSE从19.7降低 Mg/ha至15.4 Mg/ha由第二版本地理位置决定。RHT和WP度量分别给出了最佳和最差的估计精度。RHT将R2进一步提高到0.77,RMSE降低到13.0 Mg/ha,使用从SRTM DEM中提取的地形坡度,分辨率为1弧秒。基于RHT的估计模型的R2最终提高到0.8,RMSE降低到11.7 Mg/ha,使用ALS数据中的精确地形坡度。本研究证明了GEDI波形的斜率自适应指标在估计山区森林地上生物量方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas
Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍: The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China. As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信