{"title":"山地森林地上生物量GEDI波形的斜率自适应度量评估","authors":"W. Ni, Zhiyu Zhang, G. Sun","doi":"10.34133/2021/9805364","DOIUrl":null,"url":null,"abstract":"Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas\",\"authors\":\"W. Ni, Zhiyu Zhang, G. Sun\",\"doi\":\"10.34133/2021/9805364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9805364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9805364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas
Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.