基于GA-SVM的儿童Henoch-Schönlein紫癜复发风险预测

Q4 Agricultural and Biological Sciences
Yijun Liu, Beihong Wang, Ren-pu Li, Sheng He, Haixu Xi, Ye Luo
{"title":"基于GA-SVM的儿童Henoch-Schönlein紫癜复发风险预测","authors":"Yijun Liu, Beihong Wang, Ren-pu Li, Sheng He, Haixu Xi, Ye Luo","doi":"10.7546/ijba.2020.24.2.000608","DOIUrl":null,"url":null,"abstract":"The relapse risk prediction for children with Henoch-Schönlein purpura can help pediatricians make an accurate prognosis and offer personalized and appropriate follow-up nursing and relapse control to patients. In this study, we propose a Genetic algorithmSupport vector machine (GA-SVM) learning method combining the support vector machine with the genetic algorithm for parameter optimization to capture the nonlinear mapping from a panel of biomarkers to the relapse risk of HSP children. The GA-SVM prediction model is created by using the dataset of 40 samples in clinical treatment and observation of patients. The inputs of the model consist of 19 biomarkers including gender, age, immunoglobulin M, immunoglobulin G, immunoglobulin A, prothrombin time, etc. The outputs consist of 1 and -1, where 1 indicates high relapse risk and -1 indicates low relapse risk. For comparison, the GS-SVM prediction model based on parameter optimization of grid search is also created. The experimental results show that the GA-SVM prediction model has a high prediction accuracy of 90% and is strong in generalization ability. The GA-SVM model for predicting the relapse risk of HSP children is a promising decision support tool of clinical prognosis, which provides pediatricians with valuable assistance to offer rehabilitation treatment to patients.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relapse Risk Prediction for Children with Henoch-Schönlein Purpura Based on GA-SVM\",\"authors\":\"Yijun Liu, Beihong Wang, Ren-pu Li, Sheng He, Haixu Xi, Ye Luo\",\"doi\":\"10.7546/ijba.2020.24.2.000608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relapse risk prediction for children with Henoch-Schönlein purpura can help pediatricians make an accurate prognosis and offer personalized and appropriate follow-up nursing and relapse control to patients. In this study, we propose a Genetic algorithmSupport vector machine (GA-SVM) learning method combining the support vector machine with the genetic algorithm for parameter optimization to capture the nonlinear mapping from a panel of biomarkers to the relapse risk of HSP children. The GA-SVM prediction model is created by using the dataset of 40 samples in clinical treatment and observation of patients. The inputs of the model consist of 19 biomarkers including gender, age, immunoglobulin M, immunoglobulin G, immunoglobulin A, prothrombin time, etc. The outputs consist of 1 and -1, where 1 indicates high relapse risk and -1 indicates low relapse risk. For comparison, the GS-SVM prediction model based on parameter optimization of grid search is also created. The experimental results show that the GA-SVM prediction model has a high prediction accuracy of 90% and is strong in generalization ability. The GA-SVM model for predicting the relapse risk of HSP children is a promising decision support tool of clinical prognosis, which provides pediatricians with valuable assistance to offer rehabilitation treatment to patients.\",\"PeriodicalId\":38867,\"journal\":{\"name\":\"International Journal Bioautomation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Bioautomation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/ijba.2020.24.2.000608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/ijba.2020.24.2.000608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

对儿童过敏性紫癜复发风险的预测可以帮助儿科医生做出准确的预后,并为患者提供个性化和适当的随访护理和复发控制。在本研究中,我们提出了一种遗传算法支持向量机(GA-SVM)学习方法,将支持向量机与遗传算法相结合进行参数优化,以捕捉从一组生物标志物到HSP儿童复发风险的非线性映射。GA-SVM预测模型是通过使用患者临床治疗和观察中的40个样本的数据集创建的。该模型的输入由19个生物标志物组成,包括性别、年龄、免疫球蛋白M、免疫球蛋白质G、免疫球素A、凝血酶原时间等。输出由1和-1组成,其中1表示高复发风险,-1表示低复发风险。为了进行比较,还建立了基于网格搜索参数优化的GS-SVM预测模型。实验结果表明,GA-SVM预测模型的预测精度高达90%,具有较强的泛化能力。用于预测HSP儿童复发风险的GA-SVM模型是一种很有前途的临床预后决策支持工具,为儿科医生为患者提供康复治疗提供了宝贵的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relapse Risk Prediction for Children with Henoch-Schönlein Purpura Based on GA-SVM
The relapse risk prediction for children with Henoch-Schönlein purpura can help pediatricians make an accurate prognosis and offer personalized and appropriate follow-up nursing and relapse control to patients. In this study, we propose a Genetic algorithmSupport vector machine (GA-SVM) learning method combining the support vector machine with the genetic algorithm for parameter optimization to capture the nonlinear mapping from a panel of biomarkers to the relapse risk of HSP children. The GA-SVM prediction model is created by using the dataset of 40 samples in clinical treatment and observation of patients. The inputs of the model consist of 19 biomarkers including gender, age, immunoglobulin M, immunoglobulin G, immunoglobulin A, prothrombin time, etc. The outputs consist of 1 and -1, where 1 indicates high relapse risk and -1 indicates low relapse risk. For comparison, the GS-SVM prediction model based on parameter optimization of grid search is also created. The experimental results show that the GA-SVM prediction model has a high prediction accuracy of 90% and is strong in generalization ability. The GA-SVM model for predicting the relapse risk of HSP children is a promising decision support tool of clinical prognosis, which provides pediatricians with valuable assistance to offer rehabilitation treatment to patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信