具有酉不变范数的半群von Neumann代数的非交换Hardy空间的Beurling定理

IF 0.7 4区 数学 Q2 MATHEMATICS
Wenjing Liu, Lauren B. M. Sager
{"title":"具有酉不变范数的半群von Neumann代数的非交换Hardy空间的Beurling定理","authors":"Wenjing Liu, Lauren B. M. Sager","doi":"10.7900/JOT.2018FEB19.2228","DOIUrl":null,"url":null,"abstract":"We introduce a class of unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norms with repect to τ on a von Neumann algebra M with a faithful, normal, semifinite tracial weight τ . We prove a Beurling-Chen-Hadwin-Shen theorem for H∞-invariant spaces of Lα(M, τ), where α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ , and H∞ is an extension of Arveson’s noncommutative Hardy space. We use our main result to characterize the H∞-invariant subspaces of a noncommutative Banach function space I(τ) with the norm ‖ · ‖E on M, the crossed product of a semifinite von Neumann algebra by an action β, and B(H) for a separable Hilbert space H.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Beurling theorem for noncommutative Hardy spaces associated with semifinite von Neumann algebras with unitarily invariant norms\",\"authors\":\"Wenjing Liu, Lauren B. M. Sager\",\"doi\":\"10.7900/JOT.2018FEB19.2228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norms with repect to τ on a von Neumann algebra M with a faithful, normal, semifinite tracial weight τ . We prove a Beurling-Chen-Hadwin-Shen theorem for H∞-invariant spaces of Lα(M, τ), where α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ , and H∞ is an extension of Arveson’s noncommutative Hardy space. We use our main result to characterize the H∞-invariant subspaces of a noncommutative Banach function space I(τ) with the norm ‖ · ‖E on M, the crossed product of a semifinite von Neumann algebra by an action β, and B(H) for a separable Hilbert space H.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/JOT.2018FEB19.2228\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/JOT.2018FEB19.2228","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们在具有忠实的、正规的、半有限的迹权τ的von Neumann代数M上,引入了一类关于τ的酉不变的、局部的‖·‖占主导地位的、互连续的范数。我们证明了Lα(M, τ)的H∞不变空间的一个Beurling-Chen-Hadwin-Shen定理,其中α是一个关于τ的幺正不变、局部‖·‖占主导地位的互连续范数,并且H∞是Arveson的非交换Hardy空间的一个扩展。我们利用我们的主要结果刻画了一个非交换的Banach函数空间I(τ)的H∞不变子空间,其范数为M上的‖·‖E,半有限的von Neumann代数与作用β的积,以及可分离的Hilbert空间H的B(H)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Beurling theorem for noncommutative Hardy spaces associated with semifinite von Neumann algebras with unitarily invariant norms
We introduce a class of unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norms with repect to τ on a von Neumann algebra M with a faithful, normal, semifinite tracial weight τ . We prove a Beurling-Chen-Hadwin-Shen theorem for H∞-invariant spaces of Lα(M, τ), where α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ , and H∞ is an extension of Arveson’s noncommutative Hardy space. We use our main result to characterize the H∞-invariant subspaces of a noncommutative Banach function space I(τ) with the norm ‖ · ‖E on M, the crossed product of a semifinite von Neumann algebra by an action β, and B(H) for a separable Hilbert space H.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信