基于机构和数据驱动的桁架机器人梁结构热误差补偿方法

IF 2.3 4区 计算机科学 Q2 Computer Science
Long Li, Binyang Chen, Dang Sha, Chengjun Wang
{"title":"基于机构和数据驱动的桁架机器人梁结构热误差补偿方法","authors":"Long Li, Binyang Chen, Dang Sha, Chengjun Wang","doi":"10.1177/17298806231160878","DOIUrl":null,"url":null,"abstract":"As the main supporting component of the truss robot, the thermal deformation of the beam often has a great influence on the overall thermal error of the truss robot due to its large span. In order to improve the thermal error prediction accuracy of long-span truss robot, a thermal error prediction method based on multiple linear regression and long short-term memory network is proposed based on mechanism and data drive. Firstly, the multiple linear regression model is used to predict the thermal error, and the prediction error data processing. Secondly, the long short-term memory network is established. In order to improve the performance of the long short-term memory network more effectively, an improved particle swarm optimization algorithm is proposed to optimize the hyper-parameters of the long short-term memory network. Finally, the improved particle swarm optimization–long short-term memory network is used to correct the prediction error of the multiple linear regression model. The experimental results show that the combined thermal error prediction model based on multiple linear regression and improved particle swarm optimization–long short-term memory algorithm has higher prediction accuracy than multiple linear regression model and long short-term memory network. The method has stable prediction accuracy and can provide a basis for thermal error compensation.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal error compensation method of truss robot beam structure based on mechanism and data drive\",\"authors\":\"Long Li, Binyang Chen, Dang Sha, Chengjun Wang\",\"doi\":\"10.1177/17298806231160878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the main supporting component of the truss robot, the thermal deformation of the beam often has a great influence on the overall thermal error of the truss robot due to its large span. In order to improve the thermal error prediction accuracy of long-span truss robot, a thermal error prediction method based on multiple linear regression and long short-term memory network is proposed based on mechanism and data drive. Firstly, the multiple linear regression model is used to predict the thermal error, and the prediction error data processing. Secondly, the long short-term memory network is established. In order to improve the performance of the long short-term memory network more effectively, an improved particle swarm optimization algorithm is proposed to optimize the hyper-parameters of the long short-term memory network. Finally, the improved particle swarm optimization–long short-term memory network is used to correct the prediction error of the multiple linear regression model. The experimental results show that the combined thermal error prediction model based on multiple linear regression and improved particle swarm optimization–long short-term memory algorithm has higher prediction accuracy than multiple linear regression model and long short-term memory network. The method has stable prediction accuracy and can provide a basis for thermal error compensation.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231160878\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231160878","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

梁作为桁架机器人的主要支撑部件,由于其跨度较大,其热变形往往对桁架机器人的整体热误差影响较大。为了提高大跨度桁架机器人的热误差预测精度,提出了一种基于机理和数据驱动的基于多元线性回归和长短期记忆网络的热误差预测方法。首先,采用多元线性回归模型对热误差进行预测,并对预测误差数据进行处理。其次,建立长短期记忆网络。为了更有效地提高长短期记忆网络的性能,提出了一种改进的粒子群优化算法对长短期记忆网络的超参数进行优化。最后,利用改进的粒子群优化-长短期记忆网络对多元线性回归模型的预测误差进行修正。实验结果表明,基于多元线性回归和改进粒子群优化-长短期记忆算法的组合热误差预测模型比多元线性回归模型和长短期记忆网络具有更高的预测精度。该方法预测精度稳定,可为热误差补偿提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal error compensation method of truss robot beam structure based on mechanism and data drive
As the main supporting component of the truss robot, the thermal deformation of the beam often has a great influence on the overall thermal error of the truss robot due to its large span. In order to improve the thermal error prediction accuracy of long-span truss robot, a thermal error prediction method based on multiple linear regression and long short-term memory network is proposed based on mechanism and data drive. Firstly, the multiple linear regression model is used to predict the thermal error, and the prediction error data processing. Secondly, the long short-term memory network is established. In order to improve the performance of the long short-term memory network more effectively, an improved particle swarm optimization algorithm is proposed to optimize the hyper-parameters of the long short-term memory network. Finally, the improved particle swarm optimization–long short-term memory network is used to correct the prediction error of the multiple linear regression model. The experimental results show that the combined thermal error prediction model based on multiple linear regression and improved particle swarm optimization–long short-term memory algorithm has higher prediction accuracy than multiple linear regression model and long short-term memory network. The method has stable prediction accuracy and can provide a basis for thermal error compensation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信