{"title":"使用依赖于辅助变量的复杂抽样设计来估计总体平均值","authors":"A. Chaudhuri, Sonakhya Samaddar","doi":"10.2478/stattrans-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract In surveying finite populations, the simplest strategy to estimate a population total without bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) and the expansion estimator based on it. Anything other than that including SRS Without Replacement (SRSWOR) and usage of the expansion estimator is a complex strategy. We examine here (1) if from a complex sample at hand a gain in efficiency may be unbiasedly estimated comparing the “rival population total-estimators” for the competing strategies and (2) how suitable model-expected variances of rival estimators compete in magnitude as examined numerically through simulations.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating the population mean using a complex sampling design dependent on an auxiliary variable\",\"authors\":\"A. Chaudhuri, Sonakhya Samaddar\",\"doi\":\"10.2478/stattrans-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In surveying finite populations, the simplest strategy to estimate a population total without bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) and the expansion estimator based on it. Anything other than that including SRS Without Replacement (SRSWOR) and usage of the expansion estimator is a complex strategy. We examine here (1) if from a complex sample at hand a gain in efficiency may be unbiasedly estimated comparing the “rival population total-estimators” for the competing strategies and (2) how suitable model-expected variances of rival estimators compete in magnitude as examined numerically through simulations.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Estimating the population mean using a complex sampling design dependent on an auxiliary variable
Abstract In surveying finite populations, the simplest strategy to estimate a population total without bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) and the expansion estimator based on it. Anything other than that including SRS Without Replacement (SRSWOR) and usage of the expansion estimator is a complex strategy. We examine here (1) if from a complex sample at hand a gain in efficiency may be unbiasedly estimated comparing the “rival population total-estimators” for the competing strategies and (2) how suitable model-expected variances of rival estimators compete in magnitude as examined numerically through simulations.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.