具有记忆和乘性噪声的随机强阻尼非自治波动方程的随机吸引子

Abdelmajid Ali Dafallah, Qiaozhen Ma, Ahmed Eshag Mohamed
{"title":"具有记忆和乘性噪声的随机强阻尼非自治波动方程的随机吸引子","authors":"Abdelmajid Ali Dafallah, Qiaozhen Ma, Ahmed Eshag Mohamed","doi":"10.30538/psrp-oma2019.0039","DOIUrl":null,"url":null,"abstract":"Abstract: In this paper, we study the dynamical behavior of solutions for the stochastic strongly damped wave equation with linear memory and multiplicative noise defined on Rn. Firstly, we prove the existence and uniqueness of the mild solution of certain initial value for the above-mentioned equations. Secondly, we obtain the bounded absorbing set. Lastly, We investigate the existence of a random attractor for the random dynamical system associated with the equation by using tail estimates and the decomposition technique of solutions.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random attractors for Stochastic strongly damped non-autonomous wave equations with memory and multiplicative noise\",\"authors\":\"Abdelmajid Ali Dafallah, Qiaozhen Ma, Ahmed Eshag Mohamed\",\"doi\":\"10.30538/psrp-oma2019.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this paper, we study the dynamical behavior of solutions for the stochastic strongly damped wave equation with linear memory and multiplicative noise defined on Rn. Firstly, we prove the existence and uniqueness of the mild solution of certain initial value for the above-mentioned equations. Secondly, we obtain the bounded absorbing set. Lastly, We investigate the existence of a random attractor for the random dynamical system associated with the equation by using tail estimates and the decomposition technique of solutions.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2019.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2019.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:本文研究了Rn上定义的具有线性记忆和乘性噪声的随机强阻尼波动方程解的动力学行为。首先,我们证明了上述方程具有一定初值的温和解的存在性和唯一性。其次,我们得到了有界吸收集。最后,我们利用尾估计和解的分解技术研究了与方程相关的随机动力系统的随机吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random attractors for Stochastic strongly damped non-autonomous wave equations with memory and multiplicative noise
Abstract: In this paper, we study the dynamical behavior of solutions for the stochastic strongly damped wave equation with linear memory and multiplicative noise defined on Rn. Firstly, we prove the existence and uniqueness of the mild solution of certain initial value for the above-mentioned equations. Secondly, we obtain the bounded absorbing set. Lastly, We investigate the existence of a random attractor for the random dynamical system associated with the equation by using tail estimates and the decomposition technique of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信