{"title":"QTT轨道焊接数值模拟与试验研究","authors":"Duoxiang Xu, Qian Xu, Lin Li, Hui Wang, Na Wang","doi":"10.1155/2023/5525558","DOIUrl":null,"url":null,"abstract":"Considering the stringent requirement of the pointing accuracy up to 2.5″ of the world’s largest full steerable radio telescope, this paper studies the welding experiment of the azimuth track of the antenna. First, the opposite deformation jig and welding process were designed for the QTT’s azimuth track. Then, the welding process was numerically simulated using a finite element model. The simulation results show that a better welding effect will be obtained by appropriately reducing the opposite force on the basis of the original. The three deformation processes of the track are regulated by the opposite deformation jig. The results show that the opposite deformation jig designed for QTT’s azimuth track can make the amount of deformation and flatness meet the design requirements. Finally, nondestructive testing was carried out to check the welding quality of the track surface and interior. The results show that there are no obvious defects in the welds of the azimuth track. The constraint jig and welding processes designed for QTT are effective and feasible.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation and Test Study on Track Welding of QTT\",\"authors\":\"Duoxiang Xu, Qian Xu, Lin Li, Hui Wang, Na Wang\",\"doi\":\"10.1155/2023/5525558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the stringent requirement of the pointing accuracy up to 2.5″ of the world’s largest full steerable radio telescope, this paper studies the welding experiment of the azimuth track of the antenna. First, the opposite deformation jig and welding process were designed for the QTT’s azimuth track. Then, the welding process was numerically simulated using a finite element model. The simulation results show that a better welding effect will be obtained by appropriately reducing the opposite force on the basis of the original. The three deformation processes of the track are regulated by the opposite deformation jig. The results show that the opposite deformation jig designed for QTT’s azimuth track can make the amount of deformation and flatness meet the design requirements. Finally, nondestructive testing was carried out to check the welding quality of the track surface and interior. The results show that there are no obvious defects in the welds of the azimuth track. The constraint jig and welding processes designed for QTT are effective and feasible.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5525558\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/5525558","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Numerical Simulation and Test Study on Track Welding of QTT
Considering the stringent requirement of the pointing accuracy up to 2.5″ of the world’s largest full steerable radio telescope, this paper studies the welding experiment of the azimuth track of the antenna. First, the opposite deformation jig and welding process were designed for the QTT’s azimuth track. Then, the welding process was numerically simulated using a finite element model. The simulation results show that a better welding effect will be obtained by appropriately reducing the opposite force on the basis of the original. The three deformation processes of the track are regulated by the opposite deformation jig. The results show that the opposite deformation jig designed for QTT’s azimuth track can make the amount of deformation and flatness meet the design requirements. Finally, nondestructive testing was carried out to check the welding quality of the track surface and interior. The results show that there are no obvious defects in the welds of the azimuth track. The constraint jig and welding processes designed for QTT are effective and feasible.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.