基于人工蜂群算法优化的直觉模糊集局部对比度增强

ComTech Pub Date : 2017-03-31 DOI:10.21512/COMTECH.V8I1.3777
D. M. Wonohadidjojo
{"title":"基于人工蜂群算法优化的直觉模糊集局部对比度增强","authors":"D. M. Wonohadidjojo","doi":"10.21512/COMTECH.V8I1.3777","DOIUrl":null,"url":null,"abstract":"The article presented the enhancement method of cells images. The first method used in the local contrast enhancement was Intuitionistic Fuzzy Sets (IFS). The proposed method is the IFS optimized by Artificial Bee Colony (ABC) algorithm. The ABC was used to optimize the membership function parameter of IFS. To measure the image quality, Image Enhancement Metric (IEM) was applied. The results of local contrast enhancement using both methods were compared with the results using histogram equalization method. The tests were conducted using two MDCK cell images. The results of local contrast enhancement using both methods were evaluated by observing the enhanced images and IEM values. The results show that the methods outperform the histogram equalization method. Furthermore, the method using IFSABC is better than the IFS method.","PeriodicalId":31095,"journal":{"name":"ComTech","volume":"8 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Contrast Enhancement Using Intuitionistic Fuzzy Sets Optimized By Artificial Bee Colony Algorithm\",\"authors\":\"D. M. Wonohadidjojo\",\"doi\":\"10.21512/COMTECH.V8I1.3777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presented the enhancement method of cells images. The first method used in the local contrast enhancement was Intuitionistic Fuzzy Sets (IFS). The proposed method is the IFS optimized by Artificial Bee Colony (ABC) algorithm. The ABC was used to optimize the membership function parameter of IFS. To measure the image quality, Image Enhancement Metric (IEM) was applied. The results of local contrast enhancement using both methods were compared with the results using histogram equalization method. The tests were conducted using two MDCK cell images. The results of local contrast enhancement using both methods were evaluated by observing the enhanced images and IEM values. The results show that the methods outperform the histogram equalization method. Furthermore, the method using IFSABC is better than the IFS method.\",\"PeriodicalId\":31095,\"journal\":{\"name\":\"ComTech\",\"volume\":\"8 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ComTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21512/COMTECH.V8I1.3777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ComTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21512/COMTECH.V8I1.3777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了细胞图像的增强方法。在局部对比度增强中使用的第一种方法是直觉模糊集(IFS)。所提出的方法是利用人工蜂群(ABC)算法优化的IFS。采用ABC法对IFS的隶属函数参数进行了优化。为了测量图像质量,应用了图像增强度量(IEM)。将使用这两种方法的局部对比度增强的结果与使用直方图均衡方法的结果进行比较。使用两张MDCK细胞图像进行测试。通过观察增强图像和IEM值来评估使用这两种方法的局部对比度增强的结果。结果表明,该方法优于直方图均衡方法。此外,使用IFSABC的方法比IFS方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Contrast Enhancement Using Intuitionistic Fuzzy Sets Optimized By Artificial Bee Colony Algorithm
The article presented the enhancement method of cells images. The first method used in the local contrast enhancement was Intuitionistic Fuzzy Sets (IFS). The proposed method is the IFS optimized by Artificial Bee Colony (ABC) algorithm. The ABC was used to optimize the membership function parameter of IFS. To measure the image quality, Image Enhancement Metric (IEM) was applied. The results of local contrast enhancement using both methods were compared with the results using histogram equalization method. The tests were conducted using two MDCK cell images. The results of local contrast enhancement using both methods were evaluated by observing the enhanced images and IEM values. The results show that the methods outperform the histogram equalization method. Furthermore, the method using IFSABC is better than the IFS method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信