u形管和螺旋管颗粒碰撞冲蚀的CFD模拟

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
Mohammad Sheikh Mamoo, A. S. Goharrizi, B. Abolpour
{"title":"u形管和螺旋管颗粒碰撞冲蚀的CFD模拟","authors":"Mohammad Sheikh Mamoo, A. S. Goharrizi, B. Abolpour","doi":"10.24874/JSSCM.2020.14.02.01","DOIUrl":null,"url":null,"abstract":"Erosion caused by solid particles in curve pipes is one of the major concerns in the oil and gas industries. Small solid particles flow with a carrier liquid fluid and impact the inner wall of the piping, valves, and other equipment. These components face a high risk of solid particle erosion due to the constant collision, which may result in equipment malfunctioning and even failure. In this study, the two-way coupled Eulerian-Lagrangian method with the Oka erosion and Grant and Tabakoff particle-wall rebound models approach is employed to simulate the liquid-solid flow in U-bend and helical pipes using computational fluid dynamics. The effects of operating parameters (inlet fluid velocity and temperature, particle density and diameter, and mass flow rate) and design parameters (mean curvature radius/pipe diameter ratio) are investigated on the erosion of these tubes walls. It is obtained that increasing the fluid velocity and temperature, particle mass flow and particle density increase the penetration rate, particle diameter affects the rate of penetration, and increasing mean curvature radius/pipe diameter ratio decreases the rate of penetration.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CFD SIMULATION OF EROSION BY PARTICLE COLLISION IN U-BEND AND HELICAL TYPE PIPES\",\"authors\":\"Mohammad Sheikh Mamoo, A. S. Goharrizi, B. Abolpour\",\"doi\":\"10.24874/JSSCM.2020.14.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erosion caused by solid particles in curve pipes is one of the major concerns in the oil and gas industries. Small solid particles flow with a carrier liquid fluid and impact the inner wall of the piping, valves, and other equipment. These components face a high risk of solid particle erosion due to the constant collision, which may result in equipment malfunctioning and even failure. In this study, the two-way coupled Eulerian-Lagrangian method with the Oka erosion and Grant and Tabakoff particle-wall rebound models approach is employed to simulate the liquid-solid flow in U-bend and helical pipes using computational fluid dynamics. The effects of operating parameters (inlet fluid velocity and temperature, particle density and diameter, and mass flow rate) and design parameters (mean curvature radius/pipe diameter ratio) are investigated on the erosion of these tubes walls. It is obtained that increasing the fluid velocity and temperature, particle mass flow and particle density increase the penetration rate, particle diameter affects the rate of penetration, and increasing mean curvature radius/pipe diameter ratio decreases the rate of penetration.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/JSSCM.2020.14.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/JSSCM.2020.14.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

弯管中固体颗粒引起的腐蚀是石油和天然气行业关注的主要问题之一。小固体颗粒与载液一起流动,并冲击管道、阀门和其他设备的内壁。由于不断的碰撞,这些部件面临着固体颗粒侵蚀的高风险,这可能导致设备故障甚至失效。在本研究中,采用双向耦合欧拉-拉格朗日方法和Oka侵蚀以及Grant和Tabakoff颗粒壁反弹模型方法,使用计算流体动力学模拟U型弯管和螺旋管中的液固流动。研究了操作参数(入口流体速度和温度、颗粒密度和直径以及质量流量)和设计参数(平均曲率半径/管径比)对这些管壁侵蚀的影响。结果表明,随着流体速度和温度的增加,颗粒质量流量和颗粒密度的增加,穿透率增加,颗粒直径影响穿透率,平均曲率半径/管径比的增加,渗透率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD SIMULATION OF EROSION BY PARTICLE COLLISION IN U-BEND AND HELICAL TYPE PIPES
Erosion caused by solid particles in curve pipes is one of the major concerns in the oil and gas industries. Small solid particles flow with a carrier liquid fluid and impact the inner wall of the piping, valves, and other equipment. These components face a high risk of solid particle erosion due to the constant collision, which may result in equipment malfunctioning and even failure. In this study, the two-way coupled Eulerian-Lagrangian method with the Oka erosion and Grant and Tabakoff particle-wall rebound models approach is employed to simulate the liquid-solid flow in U-bend and helical pipes using computational fluid dynamics. The effects of operating parameters (inlet fluid velocity and temperature, particle density and diameter, and mass flow rate) and design parameters (mean curvature radius/pipe diameter ratio) are investigated on the erosion of these tubes walls. It is obtained that increasing the fluid velocity and temperature, particle mass flow and particle density increase the penetration rate, particle diameter affects the rate of penetration, and increasing mean curvature radius/pipe diameter ratio decreases the rate of penetration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信