极限键多项式

IF 0.6 Q3 MATHEMATICS
Maria Alberich-Carramiñana, Alberto F. Boix, Julio Fernández, J. Guàrdia, E. Nart, J. Roé
{"title":"极限键多项式","authors":"Maria Alberich-Carramiñana, Alberto F. Boix, Julio Fernández, J. Guàrdia, E. Nart, J. Roé","doi":"10.1215/00192082-8827671","DOIUrl":null,"url":null,"abstract":"Let ν be a valuation of arbitrary rank on the polynomial ring K[x] with coefficients in a field K. We prove comparison theorems between MacLane–Vaquie key polynomials for valuations μ≤ν and abstract key polynomials for ν. Also, some results on invariants associated to limit key polynomials are obtained. In particular, if char(K)=0, we show that all the limit key polynomials of unbounded continuous families of augmentations have the numerical character equal to one.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"65 1","pages":"201-229"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Of limit key polynomials\",\"authors\":\"Maria Alberich-Carramiñana, Alberto F. Boix, Julio Fernández, J. Guàrdia, E. Nart, J. Roé\",\"doi\":\"10.1215/00192082-8827671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ν be a valuation of arbitrary rank on the polynomial ring K[x] with coefficients in a field K. We prove comparison theorems between MacLane–Vaquie key polynomials for valuations μ≤ν and abstract key polynomials for ν. Also, some results on invariants associated to limit key polynomials are obtained. In particular, if char(K)=0, we show that all the limit key polynomials of unbounded continuous families of augmentations have the numerical character equal to one.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"65 1\",\"pages\":\"201-229\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-8827671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8827671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

设Γ是域K中具有系数的多项式环K[x]上任意秩的一个估值。我们证明了估值μ≤Γ的MacLane–Vaquie密钥多项式与估值Γ的抽象密钥多项式之间的比较定理。此外,还得到了与极限键多项式相关的不变量的一些结果。特别地,如果char(K)=0,我们证明了无界连续增广族的所有极限键多项式都具有等于1的数值特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Of limit key polynomials
Let ν be a valuation of arbitrary rank on the polynomial ring K[x] with coefficients in a field K. We prove comparison theorems between MacLane–Vaquie key polynomials for valuations μ≤ν and abstract key polynomials for ν. Also, some results on invariants associated to limit key polynomials are obtained. In particular, if char(K)=0, we show that all the limit key polynomials of unbounded continuous families of augmentations have the numerical character equal to one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信