{"title":"与朋友相处:通过人工智能和区块链加强多竞争对手的合作治理","authors":"J. Woolley","doi":"10.1080/13662716.2023.2168519","DOIUrl":null,"url":null,"abstract":"ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.","PeriodicalId":13585,"journal":{"name":"Industry and Innovation","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Getting along with frenemies: enhancing multi-competitor coopetition governance through artificial intelligence and blockchain\",\"authors\":\"J. Woolley\",\"doi\":\"10.1080/13662716.2023.2168519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.\",\"PeriodicalId\":13585,\"journal\":{\"name\":\"Industry and Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industry and Innovation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1080/13662716.2023.2168519\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industry and Innovation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/13662716.2023.2168519","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Getting along with frenemies: enhancing multi-competitor coopetition governance through artificial intelligence and blockchain
ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.
期刊介绍:
Industry and Innovation is an international refereed journal presenting high-quality original scholarship of the dynamics of industries and innovation. Interdisciplinary in nature, Industry and Innovation is informed by, and contributes in turn to, advancing the theoretical frontier within economics, organization theory, and economic geography. Theoretical issues encompass: •What are the institutional underpinnings for different organizational forms? •How are different industrial structures and institutions related to innovation patterns and economic performance?