{"title":"分位数间断时间序列分析的有限样本性质:模拟研究","authors":"R. Moineddin, C. Meaney, S. Kalia","doi":"10.52547/jirss.20.1.247","DOIUrl":null,"url":null,"abstract":"Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study\",\"authors\":\"R. Moineddin, C. Meaney, S. Kalia\",\"doi\":\"10.52547/jirss.20.1.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jirss.20.1.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.1.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Finite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.