分位数间断时间序列分析的有限样本性质:模拟研究

IF 0.1 Q4 STATISTICS & PROBABILITY
R. Moineddin, C. Meaney, S. Kalia
{"title":"分位数间断时间序列分析的有限样本性质:模拟研究","authors":"R. Moineddin, C. Meaney, S. Kalia","doi":"10.52547/jirss.20.1.247","DOIUrl":null,"url":null,"abstract":"Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study\",\"authors\":\"R. Moineddin, C. Meaney, S. Kalia\",\"doi\":\"10.52547/jirss.20.1.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jirss.20.1.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.1.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

中断时间序列(ITS)分析代表了一种强大的准实验设计,其中在时间序列的特定干预点强制执行不连续性,并在干预点前后拟合单独的回归函数。分段线性/分位数回归可用于ITS设计,通过估计突然/水平变化(截距变化)和/或渐变(斜率变化)来隔离干预效果。据我们所知,用于检测水平和渐变的分位数分段回归的有限样本性质仍未得到解决。在本研究中,我们使用蒙特卡罗模拟研究比较了分段分位数回归和分段线性回归的性能,其中误差分布为:IID高斯、异方差IID高斯,相关AR(1)和T(分别具有1、2和3个自由度)。当应用于真实数据集时,我们还比较了分段分位数回归和分段线性回归,采用ITS设计来估计干预对患者日平均处方量的影响。模拟研究和应用实例都说明了分位数分段回归作为一种补充统计方法的有用性,用于评估ITS设计中干预措施的影响。通讯作者:Rahim Moineddin(Rahim.moineddin@utoronto.ca)Christopher Meaney(Christopher.Meaney@utoronto.ca)Sumeet Kalia(Sumeet.Kalia@utoronto.ca)248 R.Moineddin等人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experimental design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (change in intercept) and/or the gradual change (change in slope). To our knowledge, the finite-sample properties of quantile segmented regression for detecting level and gradual change remains unaddressed. In this study, we compared the performance of segmented quantile regression and segmented linear regression using a Monte Carlo simulation study where the error distributions were: IID Gaussian, heteroscedastic IID Gaussian, correlated AR(1), and T (with 1, 2 and 3 degrees of freedom, respectively). We also compared segmented quantile regresison and segmented linear regression when applied to a real dataset, employing an ITS design to estimate intervention effects on daily-mean patient prescription volumes. Both the simulation study and applied example illustrate the usefulness of quantile segmented regression as a complementary statistical methodology for assessing the impacts of interventions in ITS designs. Corresponding Author: Rahim Moineddin (Rahim.moineddin@utoronto.ca) Christopher Meaney (Christopher.Meaney@utoronto.ca) Sumeet Kalia (Sumeet.Kalia@utoronto.ca) 248 R. Moineddin et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信