O. Fayomi, A. Popoola, F. M. Kgoete, O. Joseph, A. Ayoola
{"title":"ECA杂化颗粒对aisi1015钢DAECD镀锡锌侵害涂层持续表面活性的实验研究","authors":"O. Fayomi, A. Popoola, F. M. Kgoete, O. Joseph, A. Ayoola","doi":"10.1504/IJNP.2018.094041","DOIUrl":null,"url":null,"abstract":"The effect of sustainable degradable eco-friendly extract juice on the precipitation and re-enforcement of Zn-SnO2 alloy matrix with the aim of producing an eco-friendly composite material for engineering structural applications was investigated. Composite samples were produced from these mixtures and the effect of coconut juice (5-15% concentration) on the microstructure evolution, the mechanical properties of the composites and electrochemical behaviour were investigated. Scanning electron microscope (SEM-EDS) and atomic force microscope (AFM) were used to study the surface morphology and the surface adherent properties of the coatings. Micro-hardness behaviours were investigated by means of high impact diamond Dura scan microhardness tester. The result shows that Zn-SnO2-15CJ sulphate co-deposition contributed to increase hardness than Zn-SnO2 alloy. It was observed that Zn-Zn-SnO2-15CJ sulphate has excellent corrosion progression at ambient temperature. The hardness performance shows that developed Zn-SnO2-15CJ is increased by 80% compared to as received sample and 25% compared to Zn-SnO2.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":"10 1","pages":"196"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJNP.2018.094041","citationCount":"1","resultStr":"{\"title\":\"Experimental study and sustainable surface-active effect of ECA hybrid particulate on tin-zinc infringement coating developed via DAECD technique on AISI 1015 steel\",\"authors\":\"O. Fayomi, A. Popoola, F. M. Kgoete, O. Joseph, A. Ayoola\",\"doi\":\"10.1504/IJNP.2018.094041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of sustainable degradable eco-friendly extract juice on the precipitation and re-enforcement of Zn-SnO2 alloy matrix with the aim of producing an eco-friendly composite material for engineering structural applications was investigated. Composite samples were produced from these mixtures and the effect of coconut juice (5-15% concentration) on the microstructure evolution, the mechanical properties of the composites and electrochemical behaviour were investigated. Scanning electron microscope (SEM-EDS) and atomic force microscope (AFM) were used to study the surface morphology and the surface adherent properties of the coatings. Micro-hardness behaviours were investigated by means of high impact diamond Dura scan microhardness tester. The result shows that Zn-SnO2-15CJ sulphate co-deposition contributed to increase hardness than Zn-SnO2 alloy. It was observed that Zn-Zn-SnO2-15CJ sulphate has excellent corrosion progression at ambient temperature. The hardness performance shows that developed Zn-SnO2-15CJ is increased by 80% compared to as received sample and 25% compared to Zn-SnO2.\",\"PeriodicalId\":14016,\"journal\":{\"name\":\"International Journal of Nanoparticles\",\"volume\":\"10 1\",\"pages\":\"196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJNP.2018.094041\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNP.2018.094041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNP.2018.094041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Experimental study and sustainable surface-active effect of ECA hybrid particulate on tin-zinc infringement coating developed via DAECD technique on AISI 1015 steel
The effect of sustainable degradable eco-friendly extract juice on the precipitation and re-enforcement of Zn-SnO2 alloy matrix with the aim of producing an eco-friendly composite material for engineering structural applications was investigated. Composite samples were produced from these mixtures and the effect of coconut juice (5-15% concentration) on the microstructure evolution, the mechanical properties of the composites and electrochemical behaviour were investigated. Scanning electron microscope (SEM-EDS) and atomic force microscope (AFM) were used to study the surface morphology and the surface adherent properties of the coatings. Micro-hardness behaviours were investigated by means of high impact diamond Dura scan microhardness tester. The result shows that Zn-SnO2-15CJ sulphate co-deposition contributed to increase hardness than Zn-SnO2 alloy. It was observed that Zn-Zn-SnO2-15CJ sulphate has excellent corrosion progression at ambient temperature. The hardness performance shows that developed Zn-SnO2-15CJ is increased by 80% compared to as received sample and 25% compared to Zn-SnO2.